
page
GTX SERIES INTEGRATED MOTOR / ACTUATORS 3
Mechanical Specifications6
Drawings 18
Ordering Guide 37
TTX SERIES INTEGRATED CONTROL / MOTOR / ACTUATORS 38
Mechanical Specifications 49
Drawings 53
Ordering Guide 56
FTX SERIES HIGH FORCE ACTUATORS 57
Mechanical Specifications 60
Drawings 65
Ordering Guide. 74
FTP SERIES ELECTRIC PRESS ACTUATORS 75
Mechanical Specifications 78
Drawings 81
Ordering Guide 84
ENGINEERING REFERENCE 85
TERMS AND CONDITIONS 95

GTX Series

INTEGRATED SERVO MOTOR AND ACTUATOR

Ideal hydraulic replacement

Precise and programmable Rugged and reliable

Powerful and compact

GTX Series

Description

For applications that require long life and continuous duty, even in harsh environments, the GTX Series actuator offers a robust solution. The life of these actuators can exceed that of a ball screw actuator by 15 times, all while delivering high speeds and high forces.

Operating Conditions and Usage		
Accuracy:		
Screw Lead Error	$\mu \mathrm{m} / 300 \mathrm{~mm}$	25
	in/ft	0.001
Screw Travel Variation	$\mu \mathrm{m} / 300 \mathrm{~mm}$	30
	in/ft	0.0012
Ambient Operating Temperature	${ }^{\circ} \mathrm{C}$	0 to 25
	${ }^{\circ} \mathrm{F}$	0 to 77
Elevated Ambient Operating Temperature	${ }^{\circ} \mathrm{C}$	65*
	${ }^{\circ} \mathrm{F}$	149*
Friction Torque (typical)	Frame Size (Nm)	$\begin{aligned} & 060(0.12) \\ & 080(0.23) \\ & 100(0.34) \end{aligned}$
IP Rating		IP66S

* With derating

Elevated Ambient Temperature Operation

The speed/torque curves are based on $25^{\circ} \mathrm{C}$ ambient conditions. The actuators may be operated at ambient temperatures up to $85^{\circ} \mathrm{C}$.

Elevated Ambient Temp Factor (\%) =

$$
100 \% \times \sqrt{\frac{\text { Max Rated Temp } \left.\left[\sim 130^{\circ} \mathrm{C}\right] \text { - Environment Temp [in }{ }^{\circ} \mathrm{C}\right]}{\text { Max Rated Temp }\left[\sim 130^{\circ} \mathrm{C}\right] \text { - Rated Ambient }\left[\sim 25^{\circ} \mathrm{C}\right]}}=
$$

[^0]
Sealed for Long Life with Minimum Maintenance

GTX Series actuators have strong advantages wherever outside contaminants are an issue. In most rotary-to-linear devices, critical mechanisms are exposed to the environment. Thus, these actuators must be frequently inspected, cleaned and lubricated.

In contrast, the converting components in all Exlar GTX units are mounted within sealed motor housing. With a simple bushing and seal on the smooth extending rod, abrasive particles or other contaminants are prevented from reaching the actuator's critical mechanisms. This assures trouble-free operation even in the most harsh environments.

	Agency Standards \& Approvals	
UL		UL 1004-1
CSA		UL 1004-6
CE	EMC	CSA C22.2 NO. 100
	Safety	EN 55014-1
	RoHS	RoHS 2011/65/EU and amended with
directive 2015/863		

Product Features

Mechanical Specifications

GTX060

	Stroke Length mm (in)	Screw Lead mm (in)	Continuous Force Rating N (lbf)		Max Velocity $\mathrm{mm} / \mathrm{s}(\mathrm{in} / \mathrm{s})$		Dynamic Load Rating N (lbf)	Armature Inertia $\mathrm{kg}-\mathrm{m}^{\wedge} 2$ (in-Ib-s^2)
			4 (VAC)	D (VDC)	4 (VAC)	D (VDC)		
GTX060-80-01	80 (3.2)	2.54 (0.1)	2,668 (600)	2,668 (600)	318 (12.5)	212 (8.3)	9,230 $(2,075)$	0.00007367 (0.000652)
GTX060-80-02		5.08 (0.2)	1,900 (427)	1,610 (392)	635 (25.0)	423 (16.7)	6,850 (1,540)	
GTX060-80-04		10.2 (0.4)	1,006 (226)	852 (192)	1,270 (50.0)	847 (33.3)	5,471 (1,230)	
GTX060-150-01	150 (5.9)	2.54 (0.1)	2,668 (600)	2,668 (600)	318 (12.5)	212 (8.3)	9,230 (2,075)	0.00008689 (0.000769)
GTX060-150-02		5.08 (0.2)	1,900 (427)	1,610 (392)	635 (25.0)	423 (16.7)	6,850 (1,540)	
GTX060-150-04		10.2 (0.4)	1,006 (226)	852 (192)	1,270 (50.0)	847 (33.3)	5,471 (1,230)	
GTX060-300-01	300 (11.8)	2.54 (0.1)	2,668 (600)	2,668 (600)	318 (12.5)	212 (8.3)	$9,230(2,075)$	0.00011537 (0.001021)
GTX060-300-02		5.08 (0.2)	1,900 (427)	1,610 (392)	635 (25.0)	423 (16.7)	6,850 (1,540)	
GTX060-300-04		10.2 (0.4)	1,006 (226)	852 (192)	1,270 (50.0)	847 (33.3)	5,471 (1,230)	

Maximum velocities listed at maximum voltages
Configured stroke lengths available. Consult Exlar sales representative

Do not exceed 2 X the continuous force rating during operation
Continuous force rating based upon $25^{\circ} \mathrm{C}$ ambient conditions

GTX080

	Stroke Length mm (in)	$\begin{aligned} & \text { Screw Lead } \\ & \text { mm (in) } \end{aligned}$	Continuous Force Rating N (lbf)		Max Velocity mm / s (in/s)		Dynamic Load Rating N (lbf)	Armature Inertia kg-m^2 (in-lb-s^2)
			4 (VAC)	D (VDC)	4 (VAC)	D (VDC)		
GTX080-100-01	100 (3.9)	2.54 (0.1)	$8,365(1,881)$	7,101 (1,596	254 (10.0)	102 (4.0)	24,535 (5,516)	$\begin{array}{r} 0.000340 \\ (0.003013) \end{array}$
GTX080-100-02		5.08 (0.2)	4,740 (1,066)	4,024 (905)	508 (20.0)	203 (8.0)	25,798 (5,800)	
GTX080-100-05		12.7 (0.5)	2,008 (451)	1,704 (383)	1,270 (50.0)	508 (20.0)	21,795 (4,900)	
GTX080-150-01	150 (5.9)	2.54 (0.1)	8,365 (1,881)	7,101 (1,596	254 (10.0)	102 (4.0)	24,535 (5,516)	$\begin{array}{r} 0.000369 \\ (0.003267) \end{array}$
GTX080-150-02		5.08 (0.2)	4,740 (1,066)	4,024 (905)	508 (20.0)	203 (8.0)	25,798 (5,800)	
GTX080-150-05		12.7 (0.5)	2,008 (451)	1,704 (383)	1,270 (50.0)	508 (20.0)	21,795 (4,900)	
GTX080-300-01	300 (11.8)	2.54 (0.1)	$8,365(1,881)$	7,101 (1,596	254 (10.0)	102 (4.0)	24,535 (5,516)	$\begin{array}{r} 0.000455 \\ (0.004029) \end{array}$
GTX080-300-02		5.08 (0.2)	4,740 (1,066)	4,024 (905)	508 (20.0)	203 (8.0)	25,798 (5,800)	
GTX080-300-05		12.7 (0.5)	2,008 (451)	1,704 (383)	1,270 (50.0)	508 (20.0)	21,795 (4,900)	
GTX080-450-01	450 (17.7)	2.54 (0.1)	$8,365(1,881)$	7,101 (1,596	254 (10.0)	102 (4.0)	24,535 (5,516)	$\begin{array}{r} 0.000541 \\ (0.004790) \end{array}$
GTX080-450-02		5.08 (0.2)	4,740 (1,066)	4,024 (905)	508 (20.0)	203 (8.0)	25,798 (5,800)	
GTX080-450-05		12.7 (0.5)	2,008 (451)	1,704 (383)	1,270 (50.0)	508 (20.0)	21,795 (4,900)	

Maximum velocities listed at maximum voltages
Configured stroke lengths available. Consult Exlar sales representative.

Do not exceed $2 X$ the continuous force rating during operation Continuous force rating based upon $25^{\circ} \mathrm{C}$ ambient conditions

GTX100

	Stroke Length mm (in)	$\begin{aligned} & \text { Screw Lead } \\ & \text { mm (in) } \end{aligned}$	Continuous Force Rating N (lbf)	Max Velocity mm / s (in/s)	Dynamic Load Rating N (lbf)	Armature Inertia $\mathrm{kg}-\mathrm{m}^{\wedge} 2$ (in-Ib-s^2)
			4 (VAC)	4 (VAC)		
GTX100-150-01	150 (5.9)	2.54 (0.1)	15,392 (3,460)	191 (7.5)	54,557 (12,266)	$\begin{aligned} & 0.0014085 \\ & (0.012467) \end{aligned}$
GTX100-150-02		5.08 (0.2)	12,098 (2,720)	381 (15.0)	55,972 (12,584)	
GTX100-150-05		12.7 (0.5)	5,444 (1,224)	953 (37.5)	37,141 (8,350)	
GTX100-300-01	300 (11.8)	2.54 (0.1)	15,392 (3,460)	191 (7.5)	54,557 (12,266)	$\begin{aligned} & 0.0017399 \\ & (0.015399) \end{aligned}$
GTX100-300-02		5.08 (0.2)	12,098 (2,720)	381 (15.0)	55,972 (12,584)	
GTX100-300-05		12.7 (0.5)	5,444 (1,224)	953 (37.5)	37,141 (8,350)	

Maximum velocities listed at maximum voltages
Configured stroke lengths available. Consult Exlar sales representative.

Do not exceed 2X the continuous force rating during operation
Continuous force rating based upon $25^{\circ} \mathrm{C}$ ambient conditions

Estimated Service Life

GTX060

GTX100

GTX080

Service Life Estimate Assumptions:

- Sufficient quality and quantity of lubrication is maintained throughout service life.
- No mechanical hard stops (external or internal) or impact loads
- No external side loads
- Does not apply to short stroke, high frequency applications such as fatigue testing or short stroke, high force applications such as pressing. If your application requires high force over a stroke length shorter than the length of the rollers/nut, please contact Exlar for additional details on calculating estimated service life. You may also download the article "Calculating Life Expectency" at www.cwactuation.com.

The L_{10} expected life of a roller screw linear actuator is expressed as the linear travel distance that 90% of properly maintained roller screws manufactured are expected to meet or exceed. This is not a guarantee and these charts should be used for estimation purposes only.

The underlying formula that defines this value is:
Travel life in millions of inches, where:
$\mathrm{C}_{\mathrm{a}}=$ Dynamic load rating (lbf)
$\mathrm{F}_{\mathrm{cml}}=$ Cubic mean applied load (lbf)
$\ell=$ Roller screw lead (inches)

For additional details on calculating estimated service life, please refer www.cw-actuation.com.

Electrical Specifications

GTX060

Motor Voltage		4 (AC)			D (DC)		
Max Bus Voltage	VAC	230/460 Vrms			24/48 VDC		
Speed @ Bus Voltage	RPM	5000/7500			2400/5000		
Actuator Lead	in	0.1	0.2	0.4	0.1	0.2	0.4
RMS Sinusoidal Commutation							
Continuous Motor Torque	Nm	1.35	1.81	1.81	1.35	1.53	1.53
	lbf-in	11.9	16.0	16.0	11.9	13.6	13.6
Continuous Current Rating	A	3.0	4.0	4.0	18.3	20.8	20.8
Peak Current Rating	A	6.0	8.0	8.0	36.7	41.7	41.7
Torque Constant (Kt) (+/-10\% @ $25^{\circ} \mathrm{C}$)	Nm/A	0.5			0.08		
	lbf-in/A	4.5			0.7		
Voltage Constant (Ke) (+/-10\% @ $25^{\circ} \mathrm{C}$)	V/kRPM	30.5			5.0		
0 - Peak Sinusoidal Commutation							
Continuous Motor Torque	Nm	1.8			1.5		
	lbf-in	16			13.6		
Continuous Current Rating	A	5.7			29.5		
Peak Current Rating	A	11.3			58.9		
Torque Constant (Kt) (+/-10\% @ 25 ${ }^{\circ} \mathrm{C}$)	Nm/A	0.35			0.06		
	$\mathrm{lbf-in} / \mathrm{A}$	3.2			0.5		
Voltage Constant (Ke) (+/-10\% @ $25^{\circ} \mathrm{C}$)	V/kRPM	43.1			7.0		
Pole Configuration	Number of Poles	8			8		
Resistance (L-L) (+/-5\% @ $25^{\circ} \mathrm{C}$)	Ohms	2.8			0.1		
Inductance (L-L)(+/- 15\%)	mH	13.8			0.3		
Electrical Time Constant	ms	4.9			3.1		
Insulation Class		460 VAC Max, $180^{\circ} \mathrm{C}$ (Class H)					

Specifications subject to change without notice
Test data derived using NEMA recommended aluminum heatsink $10 " \times 10 " \times 1 / 4^{\prime \prime}$ at $25^{\circ} \mathrm{C}$ ambient
VAC Class winding operational compatible with drive voltages up to 460 VAC
VDC Class winding operational compatible with drive voltages up to 48 VDC
Rotational speed approximately proportional to drive input voltage

GTX060 Weights	
Description	$\mathrm{kg}(\mathrm{lb})$
GTX060-80	$2.3(5.1)$
GTX060-150	$2.8(6.2)$
GTX060-300	$3.9(8.6)$
Brake Adder	$0.7(1.4)$
Front Flange (1)	$0.4(0.9)$
Tapped Face (3)	$0.3(0.5)$
Rear Clevis (5)	$0.2(0.5)$
Imperial Flange (F)	$0.3(0.7)$
Imperial Clevis (C)	$0.3(0.7)$
Anti Rotate (80 mm stroke)	$0.3(0.7)$
Anti Rotate (150 mm stroke)	$0.5(1.1)$
Anti Rotate (300 mm stroke)	$0.6(1.3)$
Limit Switch Assembly w/Anti-Rotate	$0.4(0.9)$
(80 mm stroke)	$0.6(1.4)$
Limit Switch Assembly w/Anti-Rotate	
(150 mm stroke)	$0.9(2.0)$
Limit Switch Assembly w/Anti-Rotate	
(300 mm stroke)	

Brake Specifications		
Brake Holding Torque (minimum)	Nm	2.5
	Ibf-in	22
Brake Voltage	VDC	$24(-10 \% /+6 \%)$
Nominal Brake Current at 24 VDC	A	0.46
Brake Engage/Disengage Time (typical)	ms	$10 / 25$

GTX080

Motor Voltage		4 (AC)	D (DC)
Max Bus Voltage	VAC	230/460 Vrms	24/48 VDC
Speed @ Bus Voltage	RPM	3000/6000	1000/2400
RMS Sinusoidal Commutation			
Continuous Motor Torque	Nm	4.51	3.83
	lbf-in	39.9	33.9
Continuous Current Rating	A	4.9	24.2
Peak Current Rating	A	9.9	48.5
Torque Constant (Kt) (+/-10\% @ 25 ${ }^{\circ} \mathrm{C}$)	Nm/A	1.02	0.18
	$\mathrm{lbf}-\mathrm{in} / \mathrm{A}$	9.0	1.6
Voltage Constant (Ke) $\text { (+/- 10\% @ 25 } \left.{ }^{\circ} \mathrm{C}\right)$	V/kRPM	61.6	10.7
0 - Peak Sinusoidal Commutation			
Continuous Motor Torque	Nm	4.51	3.83
	lbf-in	39.9	33.9
Continuous Current Rating	A	6.6	34.6
Peak Current Rating	A	13.3	69.2
Torque Constant (Kt) (+/-10\% @ $25^{\circ} \mathrm{C}$)	Nm/A	0.72	0.13
	$\mathrm{lbf}-\mathrm{in} / \mathrm{A}$	6.4	1.1
Voltage Constant (Ke) (+/-10\% @ $25^{\circ} \mathrm{C}$)	V/kRPM	87.1	15.1
Pole Configuration	Number of Poles	8	8
$\begin{aligned} & \text { Resistance (L-L) } \\ & \left(+1-5 \% \text { @ } 25^{\circ} \mathrm{C}\right) \end{aligned}$	Ohms	2.5	0.1
Inductance (L-L)(+/- 15\%)	mH	17.3	0.46
Electrical Time Constant	ms	6.8	6.9
Insulation Class	460 VAC Max, $180^{\circ} \mathrm{C}$ (Class H)		

GTX080 Weights	
Description	kg (lb)
GTX080-100	$4.6(10.0)$
GTX080-150	$5.2(11.4)$
GTX080-300	$7.0(15.4)$
GTX080-450	$8.9(19.5)$
Brake Adder	$1.1(2.5)$
Front Flange (1)	$1.0(2.2)$
Tapped Face (3)	$0.6(1.2)$
Rear Clevis (5)	$0.4(0.8)$
Imperial Flange (F)	$0.8(1.8)$
Imperial Clevis (C)	$0.8(1.7)$
Anti Rotate (100 mm stroke)	$0.5(1.1)$
Anti Rotate (150 mm stroke)	$0.6(1.3)$
Anti Rotate (300 mm stroke)	$0.8(1.8)$
Anti Rotate (450 mm stroke)	$1.1(2.4)$
Limit Switch Assembly w/Anti-Rotate	$0.9(1.9)$
(100 mm stroke)	$1.0(2.3)$
Limit Switch Assembly w/Anti-Rotate	$1.6(3.5)$
(150 mm stroke)	2.1 (4.7)
Limit Switch Assembly w/Anti-Rotate	
$(300$ mm stroke)	
Limit Switch Assembly w/Anti-Rotate	
(450 mm stroke)	

Brake Specifications		
Brake Holding Torque (minimum)	Nm	4.5
	lbf-in	40
Brake Voltage	VDC	$24(-10 \% /+6 \%)$
Nominal Brake Current at 24 VDC	A	0.5
Brake Engage/Disengage Time (typical)	ms	$18 / 35$

GTX100

Motor Voltage		4 (AC)
Max Bus Voltage	VAC	230/460 Vrms
Speed @ Bus Voltage	RPM	3000/4500
RMS Sinusoidal Commutation		
Continuous Motor Torque	Nm	12.23
	lbf-in	108.2
Continuous Current Rating*	A	12.3
Peak Current Rating*	A	24.7
Torque Constant (Kt)$\text { (+/-10\%@ } \left.25^{\circ} \mathrm{C}\right)$	Nm/A	1.11
	$\mathrm{lbf}-\mathrm{in} / \mathrm{A}$	9.8
Voltage Constant (Ke) $\left(+/-10 \% @ 25^{\circ} \mathrm{C}\right)$	V/kRPM	67.0
0 - Peak Sinusoidal Commutation		
Continuous Motor Torque	Nm	12.23
	lbf-in	108.2
Continuous Current Rating	A	17.4
Peak Current Rating	A	34.8
Torque Constant (Kt) (+/-10\% @ $25^{\circ} \mathrm{C}$)	Nm/A	0.78
	lbf-in/A	6.92
Voltage Constant (Ke) (+/-10\%@25 ${ }^{\circ}$)	V/kRPM	94.8
Pole Configuration	Number of Poles	8
Resistance (L-L) (+/-5\% @ $25^{\circ} \mathrm{C}$)	Ohms	0.65
Inductance (L-L)(+/- 15\%)	mH	4.9
Electrical Time Constant	ms	7.6
Insulation Class	460 VAC Max, $180^{\circ} \mathrm{C}$ (Class H)	

Specifications subject to change without notice
Test data derived using NEMA recommended aluminum heatsink 12 " $\times 12^{\prime \prime} \times$ $1 / 2^{\prime \prime}$ at $25^{\circ} \mathrm{C}$ ambient
VAC Class winding operational compatible with drive voltages up to 460 VAC Rotational speed approximately proportional to drive input voltage

* For actuators with a 0.1 " lead, the torque and current must be limited to 8.89 $\mathrm{Nm} / 9.0$ A not to exceed the continuous force rating specified in the mechanical specifications table on page 6. Peak torque and current values would be $2 x$ the continuous values

GTX100 Weights	
Description	$\mathrm{kg}(\mathrm{lb})$
GTX100-150	$13.1(28.8)$
GTX100-300	$16.0(35.2)$
Brake Adder	$1.2(2.7)$
Front Flange (1)	$2.2(4.7)$
Tapped Face (3)	$1.1(2.4)$
Rear Clevis (5)	$0.8(1.8)$
Imperial Flange (F)	$1.9(4.1)$
Imperial Clevis (C)	$1.1(2.5)$
Anti Rotate (150 mm stroke)	$1.5(3.2)$
Anti Rotate (300 mm stroke)	$2.0(4.5)$
Limit Switch Assembly w/Anti-Rotate	$2.0(4.5)$
(150 mm stroke)	$2.8(6.2)$
Limit Switch Assembly w/Anti-Rotate	
(300 mm stroke)	

Brake Specifications		
Brake Holding Torque (minimum)	Nm	11
	$\mathrm{Ibf}-\mathrm{in}$	97
Brake Voltage	VDC	$24(-10 \% /+6 \%)$
Nominal Brake Current at 24 VDC	A	0.75
Brake Engage/Disengage Time (typical)	ms	$25 / 40$

Speed vs. Force Curves

These charts represent typical linear speed versus linear force curves for the GTX actuators using common brushless motor amplifiers. The GTX Series are compatible with many different brushless motor amplifiers; any differences in the performance
ratings of these amplifiers can alter the actuator's performance. Thus, the curves below should be used for estimation only. (Further information is available by contacting your local sales representative.)

AC Voltage Winding

DC Voltage Winding

AC Voltage Winding

DC Voltage Winding

AC Voltage Winding

Options

Motor Winding / Voltage

GTX actuators can be operated at a wide range of voltages (up to 460 VAC). For DC voltage applications, please refer to the order guide "D" callout. Refer to the mechanical/electrical specifications for motor torque and actuator rated force.

Internal Holding Brake

This option provides an internal holding brake for GTX Series actuators. The brake is a permanent magnet brake that is normally engaged. Power must be applied to the brake to disengage the brake.

Feedback Device Options:

Resolvers
Incremental Encoders
Absolute Encoders
Exlar GTX actuators are compatible with a variety of drive platforms available today. Exlar installs, aligns, and wires feedback devices to mimic a typical motor's wiring and cabling commonly used with the listed amplifier manufacturer (see wiring and alignment section for details). If your wiring and alignment is not listed, please consult Exlar.

External Anti-rotate Assembly

The unique design of the GTX Series of linear actuators permits the extending rod to rotate. This capability simplifies setup by allowing the user to rotate the rod in and out of the actuator for mechanical attachment or system testing.

However, this feature also requires that once setup and testing are completed, the rod be kept from rotating so proper linear motion will be maintained. In most applications the actuator's load is coupled to linear bearings, or some other support device. In these cases the load cannot rotate, so an anti-rotation on the actuator is not needed.

Splined Rod Option

The splined rod is an internal anti-rotate option that will restrict rotation but still provide linear motion without the need for an external mechanism. It is not suitable for environments where contaminants may be able to penetrate the actuator. The option does NOT meet the IP66S rating as there is no sealing component where the driven rod extends and retracts. If the unit is installed vertically rod end down there is potential for grease to exit the unit in environments where overheating can occur.

Mounting Options

Both as part of the actuator model code and sold as accessory kits. For applications in which the load is free to rotate, Exlar offers bolt-on anti-rotation systems.

External Limit Switch/ Anti-Rotate Assembly

This option allows external limit switches to be mounted to the GTX Series Actuator. These switches provide travel indication to the controller and are adjustable (Limit switches sold separately).

The external limit switch accessory for the GTX Series of linear actuators allows the user to externally mount adjustable switches for use as the end of travel limit switches or home position sensors.
(Limit switches sold separately from actuator)

NOTE: Accessory option "L" required in model mask to order

Switch Type	Exlar Part Number	Turck Part Number
Normally Closed Switch, PNP	43404	BIM-UNT-RP6X
Normally Open Switch, PNP	43403	BIM-UNT-AP6X
Normally Closed Switch, NPN	67635	BIM-UNT-RN6X
Normally Open Switch, NPN	67634	BIM-UNT-AN6X

Rod End Accessories

Spherical Rod Eye

Rod Clevis

Rod end attachments sold separately from actuator.

Dimensions

GTX060 BASE ACTUATOR
all dimensions are in millimeters

MIN. STROKE LENGTH 80 mm
MAX. STROKE LENGTH 300 mm

GTX060 WITH SPLINED MAIN ROD

NOTE: ADD 50mm TO THE OVERALL LENGTH IF ORDERING A BRAKE. THE SIDE MOUNT DISTANCE IS NOT AFFECTED.

A (ANTI-ROTATE)

 MAX. STROKE LENGTH 300 mm

L (Limit Switch Assembly)

[^1]

GTX060 IMPERIAL OPTIONS
ALL DIMENSIONS ARE IN INCHES

NOTE: $00.499 / 100.498$ CLEVIS PIN IS INCLUDED.
IMPERIAL ROD ENDS

GTX080 BASE ACTUATOR

all dimensions are in millimeters

NOTE: ADD 40mm TO THE OVERALL LENGTH IF ORDERING A BRAKE. THE SIDE MOUNT DISTANCE IS NOT AFFECTED.

GTX080 WITH SPLINED MAIN ROD

1 (FRONT FLANGE)	3 (TAPPED FACE)
5 (REAR CLEVIS) NOTE: ø12 h6 CLEVIS PIN IS INCLUDED.	METRIC ROD ENDS
GTX080 IMPERIAL OPTIONS ALL DIMENSIONS ARE IN INCHES	
C (GSX30 REAR CLEVIS) NOTE: ø0.746/ø0.741 CLEVIS PIN IS INCLUDED.	F (GSX30 FRONT FLANGE)
IMPERIAL ROD ENDS	BRAKE ADDER LOCATION 40 mm (1.575 in) ADDER

GTX100 BASE ACTUATOR

ALL DIMENSIONS ARE IN MILLIMETERS

GTX100 WITH SPLINED MAIN ROD

NOTE: ADD 40 mm TO THE OVERALL LENGTH IF ORDERING A BRAKE. THE SIDE MOUNT DISTANCE IS NOT AFFECTED.

A (ANTI-ROTATE)

L (LIMIT SWITCH ASSEMBLY)

1 (FRONT FLANGE)	3 (TAPPED FACE)
5 (REAR CLEVIS) NOTE: $\varnothing 16$ h6 CLEVIS PIN IS INCLUDED	METRIC ROD ENDS
GTX100 IMPERIAL OPTIONS ALL DIMENSIONS ARE IN INCHES	
C (GSX40 REAR CLEVIS) NOTE: ø0.746/ø0.741 CLEVIS PIN IS INCLUDED.	F (GSX40 FRONT FLANGE)
IMPERIAL ROD ENDS	BRAKE ADDER LOCATION 40mm (1.575 in) ADDER

SPHERICAL ROD EYE

	Dimensional Specs		
	GTX060	GTX080	GTX100
\varnothing Dim "A"	$\frac{8.065}{7.988}$	$\frac{16.000}{15.992}$	$\frac{25.021}{25.000}$
	22.25	45.0	65.0
Dim "C"	36.0	48.0	68.0
Dim "D"	12.0	14.0	20.0
Dim "E"	8.0	11.0	17.0
Dim "F"	47.1	70.5	100.5
Thread	M8x1.2	M12x1.25	M16x1.5
Weight (kg)	0.21	0.21	0.66

ROD END CODE "A" IS REQUIRED ON THE ACTUATOR

SPHERICAL ROD EYE ORDER CODE	
GTX060	GTX060-REI-KIT
GTX080	GTX080-REI-KIT
GTX100	GTX100-REI-KIT

Pre-sale drawings and models are representative and are subject to change. Visit exlar.com to download a 3D model of your desired configuration.

Feedback Types for GTX

Drive / Feedback Designator Callouts

Drive Manufacturers	Manufacturer Code	Resolver	Incremental Encoder	Stegmann Absolute Encoder	Stegmann Absolute DSL Encoder	Heidenhain Absolute Encoder
AMK	AK	R1A1				H1A1
B\&R Automation	BR	R1A1				H1A2
Baldor	BD	R1A1				H1A1
Baumueller	BM	R1A1		S1A1		H1A2
Beckhoff	BE					H1A2
Control Technologies/Nidec	CT	R2B1	E1B2	S1B1		H1B2
Elau/Schneider	EU			S1A1		
Elmo Motion Control	EL	R1B1	E1B2			H1B2
Exlar	EX	R1A1	E1A2	S1A2		H1A2
Infranor	IF	R1B2		S1B2		
IndramatBosch-Rexroth	IN			S2D3		H1D3
Kollmorgen	KM	R2A1	E1A2			H1A2
LTI	LS	R2A1		S1A2		
Lenze	LZ	R1B1		S1B1		
Parker	PC	R1B1	E1B2			H1B2
Rockwell Automation	RA		E1C2	S1C2	S3C0	
Siemens	SM	R1B1				H1B2
Stober Drives	SB	R2A1				H1A1

Feedbacks

R1 - Standard Resolver - Size 15, 1024 line (2048 cts) per rev. two-pole resolver
R2 - Standard Resolver - Size 15, 1024 line (2048 cts) per rev. two-pole resolver
E1 - Standard Incremental Encoder - 2048 line (8192 cts) per rev. index pulse, Hall commutation, 5VDC
S1 - Hiperface Stegmann, SKM36 multi-turn absolute encoder
S2 - Hiperface Stegmann, SKM36 multi-turn absolute encoder
S3 - Hiperface DSL Stegmann, EKM36 multi-turn absolute encoder
H1 - EnDat Heidenhain, EQN 1125 multi-turn absolute encoder

Power Connectors	Feedback Connectors
A $=8$ pin M23 Size 1, Right Angle Connector	$0=$ Feedback signal wired through power connector
B $=6$ pin M23 Size 1, Right Angle Connector	$1=12$ pin M23 Size 1, P Type, Right Angle Connector
C $=9$ pin M23 Size 1, Right Angle Connector	$2=17$ pin M23 Size 1, E Type, Right Angle Connector
D $=4+5$ pin M23 size 1, Right Angle Connector	$3=10$ pin M23 Size 1, Right Angle Connector

Wiring and Alignment Options

AMK-Resolver (AK-R1A1) -
Standard Resolver w/M23 connectors

Power Connector Pin-Out		Pin Side View
19819 Connector	Drive Terminology	
1	U	© O O
2	PE	4 (0)
3	W	-
4	V	18
A	TH	-
B	TH	
C	BR +	
D	BR OV	

Feedback Connector Pin-Out		Pin Side View
19820 Connector	Drive Terminology	
1	+ Sin	
2	- Sin	
3	$+\mathrm{Cos}$	
4	- Cos	
5	-	
6	-	
7	-	
8	Shield	
9	+ UREF	
10	- UREF	
11	-	
12	-	
Actuator Case	-	

AMK-Heidenhain (AK-H1A1) - EnDat Heidenhain EQN1125 multi-turn absolute encoder - ED/EK motor wiring w/M23 connectors

B \& R Automation-Resolver (BR-R1A1) Standard Resolver w/M23 connectors

Mfg's Cable Part Number-8CRXXX.12-1

B \& R Automation-Heidenhain (BR-H1A2) EnDat Heidenhain EQN1125 multi-turn absolute encoder 8LS/8LM motor wiring w/M23 connectors

Power Connector Pin-Out		Pin Side View	
M23 Connector	Drive Terminology		
$\mathbf{1}$	U		
$\mathbf{2}$	PE		
$\mathbf{3}$	W		
$\mathbf{4}$	V		
A	PT1000		
B	PT1000		
C	Brake		
D	Brake-		

Feedback Connector Pin-Out		Pin Side View
M23 Connector	Drive Terminology	
1	Up Sense	
2	-	
3	-	
4	OV Sense	
5	-	
6	-	

7	Up voltage supply
8	Clock
9	Clock-
10	OV voltage supply
11	-
12	B +
13	B-
14	Data
15	A +
16	A-
17	Data-
Actuator Case	-

Mfg's Cable Part Number-8CEXXX.12-1

Baldor-Resolver (BD-R1A1) -
Standard Resolver w/M23 connectors

Power Connector Pin-Out		Pin Side View	
19819 Connector	Drive Terminology		
$\mathbf{1}$	U		
$\mathbf{2}$	GND		
$\mathbf{3}$	W		
$\mathbf{4}$	V		
A	Therm		
B	Therm		
C	Brake +		
D	Brake-		

Feedback Connector Pin-Out		Pin Side View
19820 Connector	Drive Terminology	
1	R1 Ref Hi	11
2	R2 Ref Lo	
3	S1 Cos+	
4	S3 Cos-	35
5	S2 Sin+	
6	S4 Sin-	11
7	-	
8	-	
9	-	
10	-	
11	-	
12	-	
Actuator Case	Shield	

Baldor-Heidenhain (BD-H1A1) - EnDat Heidenhain EQN1125 multi-turn absolute encoder - ED/EK motor wiring w/M23 connectors

Baumueller-Resolver (BM-R1A1) -
Standard Resolver w/M23 connectors

Baumueller-Stegmann (BM-S1A1) - Hiperface Stegmann SKM36 multi-turn absolute encoder - SH motor wiring w/M23 connectors

Baumueller-Heidenhain (BM-H1A2) EnDat Heidenhain EQN1125 multi-turn absolute encoder 8LS/8LM motor wiring w/M23 connectors

Beckhoff-Heidenhain (BE-H1A2) -
EnDat Heidenhain EQN1125 multi-turn absolute encoder AM3XXXX motor wiring w/M23 connectors

Control Technologies-Resolver (CT-R2B1) Standard Resolver - FM/UM/EZ motor wiring w/M23 connectors

Power Connector Pin-Out		Pin Side View	
M23 Connector	Drive Terminology		
$\mathbf{1}$	R		
$\mathbf{2}$	S		
$\boldsymbol{¥}$			
$\mathbf{4}$	GND		
$\mathbf{5}$	T		
$\mathbf{6}$	Brake +		
Brake-			

Feedback Connector Pin-Out		Pin Side View	
M23 Connector	Drive		
$\mathbf{1}$	Excitation High		
$\mathbf{2}$	Excitation Low		
$\mathbf{3}$	Cos High		
$\mathbf{4}$	Cos Low		
$\mathbf{5}$	Sin High		
$\mathbf{6}$	Sin Low		
$\mathbf{7}$			
0			

Mfg's Cable Part NumberSRBBBBXXXX/
SRBBABXXXX

Control Technologies-Encoder (CT-E1B2) -
Standard Incremental Encoder -
FM/UM/EZ motor wiring w/M23 connectors

Power Connector Pin-Out	
M23 Connector	Drive Terminology
$\mathbf{1}$	R
$\mathbf{2}$	S
$\mathbf{¥}$	GND
$\mathbf{4}$	T
$\mathbf{5}$	Brake +
$\mathbf{6}$	Brake-

Feedback Con	ector Pin-Out	Pin Side View
$\begin{gathered} \text { M23 } \\ \text { Connector } \end{gathered}$	Drive Terminology	
1	Therm Switch	
2	Therm Switch	
3	-	
4	U	
5	U/	
6	V	
7	V/	Mfg's Cable Part Number S1BAAAXXXX
8	W	
9	W/	
10	A	
11	Z	
12	ZI	
13	A/	
14	B	
15	B/	
16	+ 5 VDC	
17	OV	
Actuator Case	-	

Control Tecchnologies-Stegmann (CT-S1B1)-
Hiperface Stegmann SKM36 multi-turn absolute encoder - FM/UM/EZ motor wiring w/M23 connectors

Power Connector Pin-Out		Pin Side View	
M23 Connector	Drive Terminology		
$\mathbf{1}$	R		
$\mathbf{2}$	S		
$¥$	GND		
4	T		
$\mathbf{5}$	Brake +		
$\mathbf{6}$	Brake-		

Feedback Connector Pin-Out		Pin Side View
M23 Connector	Drive Terminology	
1	Ref Cos	
2	Daten +	
3	Daten -	
4	Cos	
5	Sin	
6	Ref Sin	
7	Therm Switch	Mfg's Cable Part SSBCABXXXX
8	Therm Switch	
9	Screen	
10	Com	
11	-	
12	+V	
Actuator Case	-	

Control Technologies-Heidenhain (CT-H1B2) EnDat Heidenhain EQN1125 multi-turn absolute encoder unidrive SP w/M23 connectors

Power Connector Pin-Out		Pin Side View	
M23 Connector	Drive Terminology		
$\mathbf{1}$	R		
$\mathbf{2}$	S		
$\boldsymbol{¥}$	GND		
$\mathbf{4}$	T		
$\mathbf{5}$	Brake+		
$\mathbf{6}$	Brake-		

Elau-Stegmann (EU-S1A1) - Hiperface Stegmann SKM36 multi-turn absolute encoder - SH motor wiring w/M23 connectors

Power Connector Pin-Out		Pin Side View
19819 Connector	Drive Terminology	
1	U (1)	C
2	PE	(0)
3	W (3)	-
4	V (2)	B
A	$\mathrm{br}+$ (8)	A
B	br- (7)	
C	PT1000	
D	PT1000	

Feedback Connector Pin-Out		Pin Side View
19820 Connector	Drive Terminology	
1	REFCOS	$1 / 000$
2	RS485+	$\bigcirc{ }^{\circ} \mathrm{P} 70$
3	-	$\begin{array}{llll}10 & 12 & 6\end{array}$
4	-	$\left(\mathrm{O}_{3} \quad 11\right.$,
5	SIN	040
6	REFSIN	
7	RS485-	
8	COS	Mrg's Cable Part Number-
9	-	
10	GND	Cable
11	-	
12	Us	
Actuator Case	-	

Elmo-Resolver (EL-R1B1) - Standard Resolver w/M23 connectors

Feedback Connector Pin-Out		Pin Side View
M23 Connector	Drive Terminology	
1	-	
2	-	
3	Sin- S4	
4	Cos- S3	
5	Ref R2	
6	-	
7	Sin+ S2	
8	Cos+ S1	
9	Ref R1	
10	-	
11	-	
12	-	
Actuator Case	Shield	

Elmo-Encoder (EL-E1B2) - Standard Incremental Encoder w/M23 connectors

Feedback Connector Pin-Out	
M23 Connector	Drive Terminology
$\mathbf{1}$	Power Supply 5V
$\mathbf{2}$	Therm Switch
3	Power Supply OV
4	$\mathrm{HC}+$
$\mathbf{5}$	$\mathrm{HC}-$
6	$\mathrm{HA}+$
7	$\mathrm{HA}-$
8	$\mathrm{HB}+$
9	$\mathrm{HB}-$
10	$\mathrm{~A}+$
11	$\mathrm{~A}-$
12	$\mathrm{~B}+$
13	$\mathrm{~B}-$
14	Z +
15	Z -
16	-
17	Therm Switch
Actuator Case	-

Elmo-Heidenhain (EL-H1B2) - EnDat Heidenhain EQN1125 multi-turn absolute encoder w/M23 connectors

Power Connector Pin-Out		Pin Side View	
M23 Connector	Drive Terminology		
$\mathbf{1}$	U		
$\mathbf{2}$	W		
$\mathbf{¥}$	PE		
$\mathbf{4}$	Brake-		
$\mathbf{5}$	V		
$\mathbf{6}$	Brake +		

Exlar-Resolver (EX-R1A1) - Standard Resolver w/M23 connectors

Power Connector Pin-Out		Pin Side View
M23 Connector	Drive Terminology	B
1	R	\mathbb{C}
2	GND	(0)
3	T)
4	S	B
A	Brake+	- A
B	Brake-	
C	-	CBL-PWRB1-SMI-XXX
D	-	

Feedback Connector Pin-Out		Pin Side View
M23 Connector	Drive Terminology	
1	-	
2	Therm Switch	
3	- Cos	
4	- Sin	
5	- Exc	
6	Therm Switch	
7	+ Cos	CBL-RESOL-SMI-XXX
8	+ Sin	
9	+ Exc	
10	-	
11	-	
12	-	
Actuator Case	Shield	

Exlar-Encoder (EX-E1A2) -
Standard Incremental Encoder 2048 Line w/M23 connectors

Power Connector Pin-Out		Pin Side View
M23 Connector	Drive Terminology	
1	R	Cob
2	GND	(0)
3	T	-
4	S	B
A	Brake+	- A
B	Brake-	
C	-	CBL-PWVRB1-SMI-XXX
D	-	

Feedback Connector Pin-Out		Pin Side View
M23 Connector	Drive Terminology	
1	B-	- 162
2	B	4000
3	A	815170
4	A-	714 4
5	Z	\cdots
6	Z-	
7	GND	CBL-ENCOD-SMI-XXX
8	Therm Switch	
9	Therm Switch	
10	+5VDC	
11	-	
12	W-	
13	V-	
14	U-	
15	W	
16	V	
17	U	
Actuator Case	-	

Exlar-Stegmann (EX-S1A2) - Hiperface Stegmann SKM36 multi-turn absolute encoder w/M23 connectors

Power Connector Pin-Out		Pin Side View
M23 Connector	Drive Terminology	$\text { (D) } 0$
1	R	Cob
2	GND	(0)
3	T	- 纪
4	S	B 0
A	Brake+	- A
B	Brake-	
C	-	CBL-PWRB1-SMI-XXX
D	-	

Feedback Connector Pin-Out		Pin Side View
M23 Connector	Drive Terminology	
1	Sin +	
2	Com	
3	Cos +	
4	+ 5V	
5	Ref +	
6	-	
7	Therm Switch	CBL-ENCOD-SMI-XXX
8	-	
9	Sin -	
10	-	
11	Cos -	
12	-	
13	Ref -	
14	Therm Switch	
15	-	
16	-	
17	-	
Actuator Case	-	

Exlar-Heidenhain (EX-H1A2) - EnDat Heidenhain EQN1125 multi-turn absolute encoder w/M23 connectors

Power Connector Pin-Out		Pin Side View
M23 Connector	Drive Terminology	
$\mathbf{1}$	U	
$\mathbf{2}$	PE	
$\mathbf{3}$	W	
$\mathbf{4}$	V	
\mathbf{A}	Brake +	
\mathbf{B}	Brake-	
\mathbf{C}	-	CBL-ENCOD-SMI-XXX
\mathbf{D}	-	

Feedback Connector Pin-Out		Pin Side View
M23 Connector	Drive Terminology	
1	B-	$\int_{16}^{10} 120_{2}$
2	OV voltage supply	
3	A-	81517133
4	Up voltage supply	$\bigcirc 7140$
5	Data+	06
6	-	+
7	Therm Switch	
8	Clock	BL-PWRB1-SMI-XX
9	B	
10	OV Sense	
11	A	
12	Up Sense	
13	Data -	
14	Therm Switch	
15	Clock -	
16	-	
17	-	
Actuator Case	-	

Infranor-Resolver (IF-R1B2) - Standard Resolver w/M23 connectors

Infranor-Stegmann (IF-S1B2) - Hiperface Stegmann SKM36 multi-turn absolute encoder w/M23 connectors

Feedback Connector Pin-Out		Pin Side View
20494 Connector	Drive Terminology	
1	Sin +	/ $\int_{0}^{16} 120_{2}$
2	Sin -	$\bigcirc 1513$
3	Cos +	815170
4	Cos -	,
5	Ref +	605
6	Ref -	\bigcirc
7	-	
8	-	
9	-	
10	Com	
11	+ 5V	
12	PT1000	
13	PT1000	
14	-	
15	-	
16	-	
17	0	
Actuator Case		

Indramat/Bosch-Rexroth-Stegmann (IN-S2D3)-
Hiperface Stegmann multi-turn absolute encoder MSK motor wiring w/M23 connectors

Power Connector Pin-Out		Pin Side View
M23 Connector	Drive Terminology	
U1	Phase U	,
V1	Phase V	1
W1	Phase W	
PE	Earth	(3) ${ }^{5}$
5	PT1000	- 0
6	PT1000	
7	Brake+	
8	Brake-	
9	-	

Feedback Connector Pin-Out		Pin Side View
M23 Connector	Drive Terminology	
1	Vcc_Encoder	
2	GND_Encoder	
3	A+	
4	A-	
5	B+	
6	B-	
7	EncData+	Mfg's Cable Part NumberRKG4200
8	EncData-	
9	-	
10	-	

Indramat/Bosch-Rexroth-Heidenhain (IN-H1D3)-
EnDat Heidenhain EQN1125 multi-turn absolute Indradrive wiring w/M23 connectors

Kollmorgen-Resolver (KM-R2A1) - Standard Resolver -AKM motor wiring w/M23 connectors

Power Connector Pin-Out		Pin Side View
M23 Connector	Drive Terminology	
1	U	
2	GND	
3	W	
4	V	
A	Brake+	
B	Brake-	
C	-	
D	-	

Kollmorgen-Encoder (KM-E1A2) -
Standard Incremental Encoder - AKM motor wiring w/ M23 connectors

Mfg's Cable Part Number-CF-CB7374N-XX

LTI-Resolver (LS-R2A1) - Standard Resolver - AKM motor wiring w/M23 connectors

Power Co	Pin-Out	Pin Side View
$\begin{gathered} 19819 \\ \text { Connector } \end{gathered}$	$\begin{gathered} \text { Drive } \\ \text { Terminology } \end{gathered}$	
1	U	
2	GND	
3	W	
4	V	
A	Brake+	
B	Brake-	
C	-	
D	-	

LTI-Stegmann (LS-S1A2) - Hiperface Stegmann SKM36 multi-turn absolute encoder w/M23 connectors

Power Connector Pin-Out		Pin Side View
19819 Connector	Drive Terminology	D
1	Phase U	(0)
2	Protective Earth	(0)
3	Phase W	,
4	Phase V	B [
A	Brake+	-
B	Brake-	
C	PT1000	
D	PT1000	

Lenze-Resolver (LZ-R1B1) - Standard Resolver - MCS motor wiring w/M23 connectors

Lenze-Encoder (LZ-S1B1) - Hiperface Stegmann SKM36 multi-turn absolute encoder - FM/UM/EZ motor wiring w/M23 connectors

Parker-Resolver (PC-R1B1) - Standard Resolver SMH motor wiring w/M23 connectors

Power Connector Pin-Out		Pin Side View	
M23 Connector	Drive Terminology		
$\mathbf{1}$	U		
$\mathbf{2}$	V		
$\mathbf{¥}$	PE		
$\mathbf{4}$	Brake +		
$\mathbf{5}$	Brake-		
$\mathbf{6}$	W		

Feedback Connector Pin-Out		Pin Side View
M23 Connector	Drive Terminology	
1	Sin -	/(0) 0 10)
2	Sin +	$\checkmark 10080$
3	-	-
4	-	$\mathrm{O}_{3} 5^{5}$
5	-	\checkmark
6	-	
7	Ref -	

Mfg's Cable Part NumberSMH Series Incremental Encoder Cable

Parker-Encoder (PC-E1B2) - Standard Incremental Encoder - MPP series motor wiring w/M23 connectors

Mfg's Cable Part NumberSMH Series Resolver Cable

Parker-Heidenhain (PC-H1B2) -
EnDat Heidenhain EQN1125 multi-turn absolute encoder unidrive SP w/M23 connectors

Rockwell Automation-Encoder (RA-E1C2) -
Standard Incremental Encoder - MPL Type M feedback w/M23 connectors

RockwellAutomation-Stegmann (RA-S1C2) -
Hiperface, SKM36 multi-turn absolute encoder. MPL Type V feedback (128 sin/cos) /M23 connectors ${ }^{1}$

Power Connector Pin-Out		Pin Side View
M23 Connector	Drive Terminology	
A	Phase U	-
B	Phase V	\bigcirc
C	Phase W	(1)
D	Ground	(0)
E	-	(H)
F	Brake+	
G	Brake-	
H	-	
L	-	

Feedback Connector Pin-Out		Pin Side View
M23 Connector	Drive Terminology	
1	Sine +	
2	Sine -	
3	Cos +	
4	Cos -	
5	Data +	
6	Data -	

Mfg's Cable Part Number-2090-CFBM7DF-CDAxyy

1. Not compatible with Kinetix 300 Drives.

RockwellAutomation-Stegmann Absolute DSL Encoder (RA-S3C0) - Hiperface, EKM36 multi-turn absolute encoder w/M23 connectors

Power Connector Pin-Out		Pin Side View	
M23 Connector	Drive Terminology		
A	Phase U		
B	Phase V		
C	Phase W		
D	Ground		
E	Data +		
F	Brake +		
G	Brake-	Mfg's Cable Part Number-	
H	Data -		

Siemens-Resolver (SM-R1B1) - Standard Resolver 1FK7 motor wiring w/M23 connectors

Siemens-Heidenhain (SM-H1B2) - EnDat Heidenhain EQN1125 multi-turn absolute encoder - 1FK7 motor wiring w/M23 connectors

Stober-Resolver (SB-R2A1) - Standard Resolver ED/EK motor wiring w/M23 connector

Stober-Heidenhain (SB-H1A1) - EnDat Heidenhain EQN1125 multi-turn absolute encoder - ED/EK motor wiring w/M23 connectors

Feedback Connector Pin-Out		Pin Side View
19820	Drive	
Connector	Terminology	
1	Clock +	
2	Up Sense	
3	-	
4	-	
5	Data -	
6	Data	
7	-	Mfg's Cable Part NumberStober Absolute Encoder Cable
8	Clock -	
9	-	
10	OV	
11	-	
12	Up	
Actuator Case	-	

AAA $=$ GTX Integrated Motor $/$ Actuator
$060=60 \mathrm{~mm}(2.36 \mathrm{in})$
$080=80 \mathrm{~mm}(3.15 \mathrm{in})$
$100=100 \mathrm{~mm}(3.94)$
BBB $=$ Stroke Length
$080=80 \mathrm{~mm}$ (GTX060)
$100=100 \mathrm{~mm}($ GTX060, GTX080 $)$
$150=150 \mathrm{~mm}$
$300=300 \mathrm{~mm}$
$450=450 \mathrm{~mm}($ GTX080 $)$
CC $=$ Screw Lead
$01=0.10$ in $(2.54 \mathrm{~mm})$
$02=0.20$ in 5.08 mm$)$
$04=0.40$ in $(10.2 \mathrm{~mm})$ GTX060
$05=0.50$ in $\left(12.7 \mathrm{~mm}^{2}\right)$
D $=$ Winding Voltage
$4=460$ VAC Max
D $=48$ VDC Max (GTX060, GTX080)
E $=$ Rod End Thread \& Type
A $=$ Male, Metric
B $=$ Female, Metric ${ }^{2}$
C $=$ Male, Metric Splined ${ }^{2}$
D $=$ Female, Metric Splined ${ }^{2}$
M $=$ Male, English ${ }^{2}$
G $=$ Male, English Splined ${ }^{2}$
F $=$ Female, English
$H=$ Female, English Splined ${ }^{2}$

FF = Wiring and Alignment	Absolute Encoder - Stegmann
AK $=$ AMK	S1A1
$B R=B \& R$ Automation	S1A2
$B \mathrm{C}=$ Baldor	S1B1
$B E=$ Beckoff	S1B2
BM = Baumueller	S1C2
CT = Control Techniques/Nidec	S2D3
EU = Elau/Schneider	Absolute DSL Encoder - Stegmann
EL = Elmo Motion Control	S3C0
EX = Exlar	Absolute Encoder - Heidenhain
IF = Infranor	H1A1
IN = Indramat/Bosch-Rexroth	H1A2
KM = Kollmorgen/Danaher	H1B2
LS $=$ LTI	H1D3
LZ = Lenze/AC Tech	HID3
PC = Parker Compumotor	H= Internal Holding Brake
RA $=$ Rockwell Automation	$\mathrm{N}=$ No Brake
SM $=$ Siemens	$B=$ Internal Holding Brake, Electronically Released
SB = Stober Drives	B lnemal Howing Brake, Electronicaly Released
	$\mathrm{M}=$ Mounting Options
GGGG $=$ Feedback Device and Connectors	$\mathrm{N}=$ None
For more detailed descriptions of available	1 = Front Flange, Metric
feedback types see page 25	3 = Tapped Face, Metric
Resolver	5 = Rear Clevis, Metric
R1A1	F = Front Flange, English
R1B1	C = Rear Clevis, English
R1B2	
R2A1	$\mathrm{N}=$ Other Options
R2B1	$N=$ None
Incremental Encoder	A = Anti-Rotate Assembly, External
E1A2	L = Limit Switch Housing/ Anti-Rotate Assembly ${ }^{1}$
E1B2	
E1C2	${ }^{1}$ Switches sold separately
	${ }^{2}$ Splined Rod (Internal Anti-Rotate) option reduces IP rating.

TTX Series

FULLY INTEGRATED SERVO DRIVE / MOTOR / ACTUATOR

Ideal for stand-alone applications
Multiple networking options
AC or DC powered models

TTX Series

Fully Integrated Drive/Motor/Actuator

By combining the latest electronic power technology with advanced thermal management modeling technology, Exlar® has set a new benchmark for electric actuator performance versus size. TTX Series actuators now integrate an AC or DC powered servo drive, digital position controller, brushless motor and linear actuator in one elegant, compact, sealed package. Now you can distribute motion control and resolve your application challenges with one integrated device.
Simply connect power, I/O, communications and go!

Reduce Panel Space

TTX Series actuators are the highest power density, smallest footprint servo drive devices on the market. Finally, you can incorporate a fully electronic solution in the space of your existing hydraulic or pneumatic cylinder. You can also eliminate troublesome ball screw actuators; and the space previously consumed by panel mount servo drives and motion controllers is no longer needed. TTX Series actuators may also reduce the size of your machine design while significantly improving reliability.

Reduce Costs

Now you can eliminate the labor costs for mounting and wiring panels because the TTX Series houses the servo drive, digital positioner, and actuator in one convenient package. Cable costs are also significantly reduced by eliminating the need for expensive, high-maintenance specialty servo cables. All that is required is an economical standard AC or DC power cord, and standard communication cable for digital and analog I/O.

TTX System

These actuators also eliminate the issues associated with power signals and feedback signals traveling long distances from servo drive to servo motor. With the TTX Series, the servo drive and motor are always integrated in the same housing.

Flexible Communications

Digital and analog I/O, plus popular communication networks, such as Modbus TCP, Modbus RTU (standard), Ethernet/IP, and PROFINET IO, allow the TTX Series to become an integral part of your control architecture or machine control processes.

Improves Power, Performance, and Reliability

TTX Series actuators give you unrivaled power, performance, and reliability. No longer are you limited to trivial amounts of force or speeds so slow that many motion applications are not possible.

Alternative Systems

Linear Applications

TTX Series linear actuators employ a superior inverted roller screw mechanism for converting rotary motion to highly robust and long-life linear motion. These characteristics enable the TTX Series actuator to solve applications that previously required pneumatic or hydraulic cylinders. No additional mechanisms (such as acme or ball screws) are necessary to convert the actuator's rotary power into linear motion in order to move the load.

Ideal for mobile and remote applications using DC power sources, the TTX Series DC actuators have the power needed to perform. The simple to configure, yet robust interface software allows either the AC or DC TTX Series actuators to perform nearly any motion control application. The TTX Series linear actuator can be programmed to follow an analog command signal, making it ideal for numerous factory automation applications

TTX Series Option Boards

- Option boards offer adding functionality to the base TTX Series actuators
- Terminal board for customer I/O
- Isolated $4-20 \mathrm{~mA}$ analog input and output
- Communication buses
- EtherNet/IP
- Modbus TCP
- PROFINET IO

Connectivity

- Internal terminals accessible through removable cover
- M23 Power Connector (DC \& AC Models differ)
- M23 I/O
- M8 connector for RS485 (may use internal connection instead)
- M12 connector for EtherNet options (may use internal connection instead)
- Power and I/O connectors may be removed by customer for M25 threaded port
- Power and I/O connectors may be replaced by customer with cable glands
- Power and I/O connectors may be replaced by customer with $1 / 2$ inch NPT adaptors

TTX Series Operation

The TTX Series actuators can operate in one of five different motion-producing modes. These modes solve an endless variety of applications in industrial automation, medical equipment, fastening and joining, blow molding, injection molding, testing, food processing, and more.

Programmed functions are stored in the TTX Series non-volatile memory. A standard RS485 serial interface allows control, programming, and monitoring of all aspects of the motor or actuator as it performs your application. Optional communications protocols are available.

Operating Modes

1. Move to a position (or switch)

The TTX Series actuators allow you to execute up to 16 programmed positions or distances. You may also use a limit switch or other input device as the end condition of a move. This combination of index flexibility provides a simple solution for point-to-point indexing.
2. Move to a preset force The TTX Series allows you to terminate your move upon the achievement of a programmed torque or force. This is an ideal mode for pressing and clamping applications.
3. Position proportional to an analog signal Ideal for process control solutions, the TTX Series provides the functionality to position a control valve by following an analog input signal. Therefore, it delivers precise valve control - which cannot be achieved by other electric, hydraulic, or pneumatic actuators.
4. Velocity proportional to an analog signal TTX Series actuators offer you the capability to control velocity with an analog signal.
5. Force proportional to analog signal Perfect for pressing applications, you can control force with an analog input while in force mode.

Selectable Input Functions

- Enable •Execute Move (0-15) • Dedicated Position •Jog+
- Jog- • Jog Fast • Home •Extend Switch • Retract Switch
- Home Switch • Teach Enable •Teach Move (1-16)
- Select Move • Stop • Hold • Reset Faults
- Alternate Mode (allows you to switch between 2 operating modes)

Selectable Output Functions

- Enabled • Homed • Ready (Enabled and Homed)
- Fault •Warning •Fault or Warning Active
- Move (0-15) in Progress • Homing • Jogging
- Jogging+ • Jogging- • Motion •In Position
- At Home Position • At Move (0-15) • Position
- Stopped • Holding • In Current Limit • In Current Fold Back
- Above Rated Current • Home

Expert User Interface

Expert, the TTX user interface software, provides you with a simple way to select all aspects of configuration and control required to set up and operate a TTX Series actuator. Easy-to-use tabbed pages provide access to input all of the parameters necessary to successfully configure your motion application. 'Application' files give you a convenient way to store and redistribute configurations amongst multiple computers, and 'Drive' files allow the same configuration to be distributed to multiple TTX Series actuators. Motion setup, homing, teach mode, tuning parameters, jogging, I/O configurations, and local control are all accomplished with ease using Expert software.

Protocol Options

The standard communication protocol for Tritex is an RS485 connection using Modbus RTU. The Modbus protocol provides a simple and robust method to connect industrial electronic devices on the same network. The Expert software acts as a Modbus Master and the TTX Series acts as the Slave device, only responding to requests commanded through the software. The Expert software allows full access to commissioning, configuring, monitoring, and controlling the TTX Series.

In addition, the following protocol options are available by selecting the communication option boards. Exlar requires initial commissioning of a TTX Series actuator to be performed with the Modbus protocol.

Modbus TCP

Modbus TCP couples Modbus communication structure from Modbus RTU with EtherNet connectivity. The Modbus TCP option is fully supported by the Expert software and offers seamless
commissioning, configuring, monitoring and controlling the Tritex II. Communication protocol DSP 301 is supported as well as DSP 402 supporting Profile Torque, Profile Velocity, Profile Position and Homing. Setup on the system is most easily achieved with the Expert software using the RS485 port. A Modbus mapping table allows you to map all of the parameters you wish to read and modify into a register bank of up to 100 registers. This allows a PLC program to perform a single read operation and a single write operation to all the parameters.

EtherNet/IP

EtherNet/IP allows you to change, monitor, and control the TTX through implicit or explicit messaging initiated from your Rockwell PLC. Tritex parameters are set up through the Expert software using a TTX Series parameter to EtherNet/IP parameter mapping table. Up to 100 input, and 100 output 16 bit registers can be mapped to TTX Series parameters.

PROFINET IO

PROFINET IO allows you to change, monitor and control the TTX Series from your Siemens PLC. Tritex parameters are set up through the Expert software using a TTX Series parameter to PROFINET IO parameter mapping table. Up to 100 input and 100 output, 16 bit registers can be mapped to TTX Series parameters.

Modbus Mapping Screen

Motion Setup

Exlar configuration provides several templates for various applications. These can serve as your configuration, or as a starting point for your configuration. You can also begin by selecting configuration details specific to your application. At the click of a button, you can configure a move to position, move to switch, or move to force motion. TTX Series products offer absolute and incremental motion, as well as moves ending on a condition, such as a specific force or torque.

Control Page

The Expert control page gives you the ability to initiate all motion functions from one simple screen. This screen provides you with very easy system start-up and testing, without all the inconvenience of machine wiring.

The control page offers the capability to enable and disable the drive, and perform fast and slow jogs. This gives you the ability to verify motion, before needing any I / O wiring.

Monitoring and Diagnostics

All input functions can be monitored and activated from the Expert monitor page, and all output functions can be monitored. Critical fault and status data is available as a separate page, or as a fixed window on the bottom of each page of the software.

Configuring I/O

A drop down menu allows all I / O to be set up in a matter of minutes. Inputs can be configured to be maintained or momentary, depending on the application requirements. Input and output logic can be inverted with a single click.

Scope

The Expert Software includes a four-channel digital oscilloscope feature.

You can select up to four Tritex drive parameters to be monitored simultaneously.

For high speed requirements, the data can be captured in the drive's memory at an adjustable rate, down to 100 micro seconds, and then uploaded for plotting. The plots can be saved or printed, and the captured data can be saved as a comma separated file for further analysis with Excel.

Homing

You can home to an input, by using a proximity or limit switch, or home to a specific force or torque.

Homing to a force or torque is ideal for setting up applications that require motion referenced to a hard stop, like the closed position of a valve, or the final position of a press.

Teach Mode

In this mode, you can jog the actuator to the desired position, and activate an input. Alternatively, you can click a button in the Expert software and the current position of the actuator becomes the defined distance or absolute position associated with a particular move command.

Process Control Functionality

Precise valve and damper control are perfect applications for TTX Series actuators. They outperform other electric, hydraulic and pneumatic actuators by providing small hysteresis and dead band, quick response to small signal changes, and stable dynamic responses. Fully programmable to follow an analog or digital signal representing either position or force, the TTX Series linear actuator is well suited for control valve applications with thrust requirements up to 4404 N .

Additionally, TTX Series actuators can be mounted on any valve from any manufacturer giving you maximum flexibility.

Benefits for Process Control Applications

Extreme Accuracy

The Exlar actuators stroke the valve based on position, not air or oil pressure. Accuracy and repeatability are better than 0.1%.

100\% Duty Cycle

A roller screw provides a unique way of converting rotary motor motion to a linear force, and offers full modulation capability. Life is measured in hundreds of million strokes vs. thousands like typical electric actuators.

Built in Positioner

TTX Series actuators include a built in positioner with a $4-20 \mathrm{~mA}$ or digital signal to tell you the exact stroke position. An analog output is also available.

Flexibility

These actuators include digital I/O and analog control. This provides the user with options for additional control such as emergency stop, +/- jog, or various diagnostic conditions.

Low Power Consumption

The TTX Series actuator only uses the current needed for a given force. This extreme efficiency makes it suitable for use with solar panels and batteries.

Fast Response and Stroke Speeds

Most other electric actuators are known for being slow-a major disadvantage. TTX Series response rate is measured in milliseconds. Stoke speeds can be up to $762 \mathrm{~mm} / \mathrm{sec}$.

Hydraulic Replacement

Tritex actuators have the same capabilities as a hydraulic equivalent, but without the cost or maintenance issues. High force, fast speeds and precise movements make it a superior substitute for hydraulic applications.

Absolute Feedback

The absolute feedback option gives the actuator memory after teaching the valve limits. So upon power loss, the battery backup will maintain the valve limits.

Diagnostics

All inputs and outputs can be monitored including position, temperature, current, and many more. An oscilloscope feature allows you to select up to four parameters to be monitored simultaneously. The data can be captured in the drive's memory at an adjustable rate, down to 100 micro sec, and then uploaded for plotting.

TTX Series Agency Approval

Shown below are additional agency approvals applied to TTX Series Actuators.

Agency Standards \& Approvals			
		TTX-AC Models	TTX-DC Models
UL		UL 1004-1	N/A
		UL 1004-3	
		UL 1004-6	
		UL 508C (TTX080 PCB)	
		UL 61800-5-1 (TTX100 PCB)	
CSA		CSA C22.2 NO. 77	N/A
		CSA C22.2 NO. 100	
		CSA C22.2 NO. 274 (PCB)	
CE	EMC	EN 61800-3	EN 61800-3
	Safety	EN 61800-5-1	N/A
	RoHS	RoHS 2011/65/EU	RoHS 2011/65/EU
Vibration	Qual. Test Only	2.5 grms; 5 to 500 Hz	5.0 grms; 5 to 500 Hz
ODVA		Ethernet IP	Ethernet IP
PROFINET			Profinet IO

TTX Series (AC Power)

No Compromising on Power, Performance or Reliability

With forces up to almost $6,000 \mathrm{~N}$ ($1,350 \mathrm{lbf}$) continuous and and speeds to $635 \mathrm{~mm} / \mathrm{sec}(25 \mathrm{in} / \mathrm{sec})$, the AC TTX Series linear actuators also offer a benefit that no other integrated product offers: POWER! No longer are you limited to trivial amounts of force, or speeds so slow that many motion applications are not possible. The TTX Series with AC power electronics operates with maximum reliability over a broad range of ambient temperatures: $0^{\circ} \mathrm{C}$ to $+65^{\circ} \mathrm{C}$. The AC powered TTX Series actuators contain a 1.5 kW servo amplifier and a very capable motion controller. With standard features such as analog following for position, compound moves, move chaining, and individual force/torque control for each move, the TTX Series is the ideal solution for most motion applications.

TTX Series Models

- TTX Series high mechanical capacity actuator, 80 mm

Power Requirements

- AC Power 100V-230V, + - 10%, single phase
- Built-in AC line filter
- Connections for external braking resistor

Feedback

- Absolute Feedback (analog hall with multi-turn, battery backup)

Connectivity

- Internal terminals acessible through removable cover
- M23 connectors
- M8 connector for RS485
- M12 connector for Ethernet options

TTX Series (DC Power)

Linear Actuators

No Compromising on Power, Performance or Reliability With forces up to approximately $3879 \mathrm{~N}(872 \mathrm{lbf})$ continuous and speeds up to $508 \mathrm{~mm} / \mathrm{sec}(20 \mathrm{in} / \mathrm{sec})$. The DC TTX Series linear actuators also offer a benefit that no other integrated product offers: POWER! No longer are you limited to trivial amounts of force, or speeds so slow that many motion applications are not possible. The new TTX Series with DC power electronics operates with maximum reliability over a large temperature range: $0^{\circ} \mathrm{C}$ to $+65^{\circ} \mathrm{C}$. The DC powered TTX Series actuators contain a 750 W servo amplifier and a very capable motion controller. With standard features such as analog following for position, compound moves, move chaining, and individual force/torque control for each move, the TTX Series is the ideal solution for most motion applications.

TTX Series Models

- TTX Series high mechanical capacity actuator, 80 mm

Power Requirements

- DC Power 12-48 VDC nominal
- Connections for external braking resistor

Feedback

- Absolute Feedback (analog hall with multi-turn, battery backup)

Connectivity

- Internal terminals accessible through removable cover
- M23 connectors
- M8 connector for RS485
- M12 connector for EtherNet options

Operating Conditions and Usage for AC and DC Units		
Accuracy:		
Screw Lead Error	$\mu \mathrm{m} / 300 \mathrm{~mm}$	25
Screw Travel Variation	$\mathrm{in} / \mathrm{ft}$	0.001
Standard Ambient Temperature ${ }^{*}$	$\mathrm{~mm} / 300 \mathrm{~mm}$	30
In/ft	0.0012	
IP Rating	${ }^{\circ} \mathrm{C}$	0 to 65
Friction Torque (typical)	Frame Size	32 to 149
	$\mathrm{Nm})$	IP66S

Communications \& I/O

All models include digital IO and an isolated RS485 communication port. Digital I/O is isolated from other channels as a group, with all channels referenced to the negative side of the I/O supply.

The IO count and type vary with the actuator model and option module selected.

TTX AC and DC I/O		
	SIO, EIP, PIO, TCP	IA4
Digital inputs	8	4
Digital outputs	4	3
Analog input, voltage	1	0
Analog output, voltage	1	0
Analog input 4-20mA	0	1
Analog output 4-20mA	0	1

Digital Inputs:

10 to 30 VDC Opto-isolated but common return

Digital Outputs:

30 VDC maximum
Opto-isolated but common supply \& return
100 mA continuous output Isolated

SIO

Analog Input (Voltage):
+/-10 Vdc Range
13 bit resolution over full range
May be assigned to control Position, Velocity, Torque, or Velocity Override.

Analog Output (Voltage):

$0-10$ Vdc Range

11 bit resolution over full range
May be assigned to monitor one of many internal parametes.

IA4

Analog Input (4-20 mA):

16 bit resolution Isolated
Assignable to Position, Velocity, or Torque command

Analog Output (4-20 mA):

12 bit resolution
Assignable to Position, Velocity, Current, Temperature, etc

Standard Communications:

1 RS485 port opto-isolated, for programming, controlling and monitoring. Uses Modbus RTU protocol

Mechanical Specifications

TTX080

	Stroke mm (in)	$\begin{array}{r} \text { Screw } \\ \text { Lead } \\ \mathrm{mm}(\mathrm{in}) \end{array}$	Continuous Force Rating N (lbf)		Peak Force Rating N (lbf)		Max Velocity mm / s (in/s)		Dynamic Load Rating N (lbf)	Armature Inertia kg-m^2 (in-lb-s^2)	Maximum Continuous Input Current	
			4 (VAC)	D (VDC)	4 (VAC)	D (VDC)	4 (VAC)	D (VDC)			$\begin{aligned} & 4 \text { (VAC) } \\ & \text { (A-RMS) } \end{aligned}$	$\begin{aligned} & \mathrm{D}(\mathrm{VDC}) \\ & (\mathrm{A}-\mathrm{DC}) \end{aligned}$
TTX080-100-01	$\begin{array}{r} 100 \\ (3.9) \end{array}$	$\begin{aligned} & 2.54 \\ & (0.1) \end{aligned}$	$\begin{array}{r} 5,897 \\ (1,326) \end{array}$	$\begin{array}{r} 4,970 \\ (1,117) \end{array}$	$\begin{gathered} 11,794 \\ (2,651) \end{gathered}$	$\begin{array}{r} 8,946 \\ (2,011) \end{array}$	$\begin{gathered} 127 \\ (5.0) \end{gathered}$	$\begin{array}{r} 102 \\ (4.0) \end{array}$	$\begin{array}{r} 24,535 \\ (5,516) \end{array}$	$\begin{array}{r} 0.000340 \\ (0.003013) \end{array}$	4.1	18.0
TTX080-100-02		$\begin{aligned} & 5.08 \\ & (0.2) \end{aligned}$	$\begin{aligned} & 3,342 \\ & (751) \end{aligned}$	$\begin{aligned} & 2,816 \\ & (633) \end{aligned}$	$\begin{array}{r} 6,683 \\ (1,502) \end{array}$	$\begin{array}{r} 5,069 \\ (1,140) \end{array}$	$\begin{array}{r} 254 \\ (10.0) \end{array}$	$\begin{array}{r} 203 \\ (8.0) \end{array}$	$\begin{gathered} 25,798 \\ (5,800) \end{gathered}$			
TTX080-100-05		$\begin{aligned} & 12.7 \\ & (0.5) \end{aligned}$	$\begin{aligned} & 1,415 \\ & (318) \end{aligned}$	$\begin{aligned} & 1,193 \\ & (268) \end{aligned}$	$\begin{aligned} & 2,830 \\ & (636) \end{aligned}$	$\begin{aligned} & 2,147 \\ & (483) \end{aligned}$	$\begin{array}{r} 635 \\ (25.0) \end{array}$	$\begin{array}{r} 508 \\ (20.0) \end{array}$	$\begin{aligned} & 21,795 \\ & (4,900) \end{aligned}$			
TTX080-150-01	$\begin{array}{r} 150 \\ (5.9) \end{array}$	$\begin{gathered} 2.54 \\ (0.1) \end{gathered}$	$\begin{array}{r} 5,897 \\ (1,326) \end{array}$	$\begin{array}{r} 4,970 \\ (1,117) \end{array}$	$\begin{gathered} 11,794 \\ (2,651) \end{gathered}$	$\begin{array}{r} 8,946 \\ (2,011) \end{array}$	$\begin{array}{r} 127 \\ (5.0) \end{array}$	$\begin{array}{r} 102 \\ (4.0) \end{array}$	$\begin{array}{r} 24,535 \\ (5,516) \end{array}$	$\begin{array}{r} 0.000369 \\ (0.003267) \end{array}$		
TTX080-150-02		$\begin{aligned} & 5.08 \\ & (0.2) \end{aligned}$	$\begin{aligned} & 3,342 \\ & (751) \end{aligned}$	$\begin{aligned} & 2,816 \\ & (633) \end{aligned}$	$\begin{array}{r} 6,683 \\ (1,502) \end{array}$	$\begin{array}{r} 5,069 \\ (1,140) \end{array}$	$\begin{array}{r} 254 \\ (10.0) \end{array}$	$\begin{array}{r} 203 \\ (8.0) \end{array}$	$\begin{aligned} & 25,798 \\ & (5,800) \end{aligned}$			
TTX080-150-05		$\begin{aligned} & 12.7 \\ & (0.5) \end{aligned}$	$\begin{aligned} & 1,415 \\ & (318) \end{aligned}$	$\begin{aligned} & 1,193 \\ & (268) \end{aligned}$	$\begin{aligned} & 2,830 \\ & (636) \end{aligned}$	$\begin{aligned} & 2,147 \\ & (483) \end{aligned}$	$\begin{array}{r} 635 \\ (25.0) \end{array}$	$\begin{array}{r} 508 \\ (20.0) \end{array}$	$\begin{aligned} & 21,795 \\ & (4,900) \end{aligned}$			
TTX080-300-01	$\begin{array}{r} 300 \\ (11.8) \end{array}$	$\begin{aligned} & 2.54 \\ & (0.1) \end{aligned}$	$\begin{array}{r} 5,897 \\ (1,326) \end{array}$	$\begin{array}{r} 4,970 \\ (1,117) \end{array}$	$\begin{aligned} & 11,794 \\ & (2,651) \end{aligned}$	$\begin{array}{r} 8,946 \\ (2,011) \end{array}$	$\begin{array}{r} 127 \\ (5.0) \end{array}$	$\begin{array}{r} 102 \\ (4.0) \end{array}$	$\begin{array}{r} 24,535 \\ (5,516) \end{array}$	$\begin{array}{r} 0.000455 \\ (0.004029) \end{array}$		
TTX080-300-02		$\begin{aligned} & 5.08 \\ & (0.2) \end{aligned}$	$\begin{aligned} & 3,342 \\ & (751) \end{aligned}$	$\begin{aligned} & 2,816 \\ & (633) \end{aligned}$	$\begin{array}{r} 6,683 \\ (1,502) \end{array}$	$\begin{array}{r} 5,069 \\ (1,140) \end{array}$	$\begin{array}{r} 254 \\ (10.0) \end{array}$	$\begin{array}{r} 203 \\ (8.0) \end{array}$	$\begin{aligned} & 25,798 \\ & (5,800) \end{aligned}$			
TTX080-300-05		$\begin{aligned} & 12.7 \\ & (0.5) \end{aligned}$	$\begin{aligned} & 1,415 \\ & (318) \end{aligned}$	$\begin{aligned} & 1,193 \\ & (268) \end{aligned}$	$\begin{array}{r} 2,830 \\ (636) \end{array}$	$\begin{aligned} & 2,147 \\ & (483) \end{aligned}$	$\begin{array}{r} 635 \\ (25.0) \end{array}$	$\begin{array}{r} 508 \\ (20.0) \end{array}$	$\begin{aligned} & 21,795 \\ & (4,900) \end{aligned}$			
TTX080-450-01	$\begin{array}{r} 450 \\ (17.7) \end{array}$	$\begin{gathered} 2.54 \\ (0.1) \end{gathered}$	$\begin{array}{r} 5,897 \\ (1,326) \end{array}$	$\begin{array}{r} 4,970 \\ (1,117) \end{array}$	$\begin{aligned} & 11,794 \\ & (2,651) \end{aligned}$	$\begin{array}{r} 8,946 \\ (2,011) \end{array}$	$\begin{array}{r} 127 \\ (5.0) \end{array}$	$\begin{array}{r} 102 \\ (4.0) \end{array}$	$\begin{array}{r} 24,535 \\ (5,516) \end{array}$	$\begin{array}{r} 0.000541 \\ (0.004790) \end{array}$		
TTX080-450-02		$\begin{aligned} & 5.08 \\ & (0.2) \end{aligned}$	$\begin{aligned} & 3,342 \\ & (751) \end{aligned}$	$\begin{aligned} & 2,816 \\ & (633) \end{aligned}$	$\begin{array}{r} 6,683 \\ (1,502) \end{array}$	$\begin{array}{r} 5,069 \\ (1,140) \end{array}$	$\begin{array}{r} 254 \\ (10.0) \end{array}$	$\begin{array}{r} 203 \\ (8.0) \end{array}$	$\begin{aligned} & 25,798 \\ & (5,800) \end{aligned}$			
TTX080-450-05		$\begin{aligned} & 12.7 \\ & (0.5) \end{aligned}$	$\begin{aligned} & 1,415 \\ & (318) \end{aligned}$	$\begin{aligned} & 1,193 \\ & (268) \end{aligned}$	$\begin{aligned} & 2,830 \\ & (636) \end{aligned}$	$\begin{aligned} & 2,147 \\ & (483) \end{aligned}$	$\begin{array}{r} 635 \\ (25.0) \end{array}$	$\begin{array}{r} 508 \\ (20.0) \end{array}$	$\begin{aligned} & 21,795 \\ & (4,900) \end{aligned}$			

Specifications subject to change without notice.
Test data derived using NEMA recommended aluminum heatsink 10 " x 10 " x $3 / 8$ " at $25^{\circ} \mathrm{C}$ ambient.
Maximum velocities listed at maximum voltages

Estimated Service Life

Service Life Estimate Assumptions:

- Sufficient quality and quantity of lubrication is maintained throughout service life (please refer to the engineering reference section for lubrication interval estimates.)
- Bearing and screw temperature between $20^{\circ} \mathrm{C}$ and $40^{\circ} \mathrm{C}$
- No mechanical hard stops (external or internal) or impact loads
- No external side loads
- Does not apply to short stroke, high frequency applications such as fatigue testing or short stroke, high force applications such as pressing. (For information on calculating estimating life for unique applications please refer to the engineering reference section.)

The L_{10} expected life of a roller screw linear actuator is expressed as the linear travel distance that 90% of properly maintained roller screws are expected to meet or exceed. For higher than 90% reliability, the result should be multiplied by the following factors: $95 \% \times 0.62 ; 96 \% \times 0.53 ; 97 \% \times 0.44$; $98 \% \times 0.33 ; 99 \% \times 0.21$. This is not a guarantee; these charts should be used for estimation purposes only.

The underlying formula that defines this value is:
Travel life in millions of inches, where:

$$
\begin{aligned}
& C_{a=}=\text { Dynamic load rating (lbf) } \\
& F_{\text {cml }}=\text { Cubic mean applied load (lbf) } \\
& \ell=\text { Roller screw lead (inches) }
\end{aligned} \quad L_{10}=\binom{C_{a}}{F_{\mathrm{cml}}}^{3} \times \ell
$$

For additional details on calculating estimated service life, please refer www.exlar.com.

Accessories

Internal Holding Brake

This option provides an internal holding brake. The brake is spring activated and electrically released.

External Anti-rotate Assembly

This option provides a rod and bushing to restrict the actuator rod from rotating when the load is not held by another method. Shorter actuators have single sided anti-rotation attachments. Longer lengths require attachments on both sides for proper operation.

Description	Weight kg (lb)
TTX080-100	$5.5(12.2)$
TTX080-150	$6.2(13.5)$
TTX080-300	$8.0(17.6)$
TTX080-450	$9.8(21.6)$
Brake Adder	$1.1(2.5)$
Front Flange (1)	$1.0(2.2)$
Tapped Face (3)	$0.6(1.2)$
Rear Clevis (5)	$0.4(0.8)$
Imperial Flange (F)	$0.8(1.8)$
Imperial Clevis (C)	$0.8(1.7)$
Anti Rotate (100 mm stroke)	$0.5(1.1)$
Anti Rotate (150 mm stroke)	$0.6(1.3)$
Anti Rotate (300 mm stroke)	$0.8(1.8)$
Anti Rotate (450 mm stroke)	$1.1(2.4)$
Limit Switch Assembly (100 mm stroke)	$0.9(1.9)$
Limit Switch Assembly (150 mm stroke)	$1.0(2.3)$
Limit Switch Assembly (300 mm stroke)	$1.6(3.5)$
Limit Switch Assembly (450 mm stroke)	$2.1(4.7)$

TTX Brake Speccifications		
Brake Holding Torque (minimum)	Nm	4.5
	Ibf-in	40
Brake Voltage	VDC	$24(-10 \% /+6 \%)$
Nominal Brake Current at 24 VDC	A	0.5
Brake Engage/Disengage Time (typical)	ms	$18 / 35$

Speed vs. Force Curves

Temperature Derating

The speed/torque curves are based on $25^{\circ} \mathrm{C}$ ambient conditions. The actuators may be operated at ambient temperatures up to $85^{\circ} \mathrm{C}$.

Elevated Ambient Temp Factor (\%) =
$100 \% \times \sqrt{\frac{\text { Max Rated Temp }\left[\sim 130^{\circ} \mathrm{C}\right] \text { - Environment Temp }\left[\text { in }{ }^{\circ} \mathrm{C}\right]}{\text { Max Rated Temp }\left[\sim 130^{\circ} \mathrm{C}\right]-\text { Rated Ambient }\left[\sim 25^{\circ} \mathrm{C}\right]}}=$

$100 \% \times \sqrt{\frac{130^{\circ} \mathrm{C} \text { - Environment Temp }}{105^{\circ} \mathrm{C}}} \quad$| $=\%$ of published |
| :--- |
| continuous @ $25^{\circ} \mathrm{C}$ |

*Test data derived using NEMA recommended aluminum heatsink $10^{\prime \prime} \times 10^{\prime \prime} \times 3 / 8^{\prime \prime}$ at $25^{\circ} \mathrm{C}$ ambient.

Dimensions

AC and DC Base Actuator

5 (REAR CLEVIS)

3 (TAPPED FACE)
ROD ENDS

NOTE: A/R CAN BE MOUNTED ON THE LEFT SIDE, RIGHT SIDE OR BOTTOM. SHOWN IN THE STANDARD FACTORY MOUNTED LOCATION. (SWITCHES SOLD SEPARATELY)

[^2]
TTX080 IMPERIAL OPTIONS

ALL DIMENSIONS IN INCHES

C (GSX30 REAR CLEVIS)

NOTE: ø0.746/ø0.741 CLEVIS PIN IS INCLUDED.

F (GSX30 FRONT FLANGE)

ROD ENDS

1/2-20 UNF-2B
$\times 28 \mathrm{~mm}$ DEEP MIN.

Cables and Accessories

TTX Series Cables \& AccesSories	Part No.	
"I" Connection		
Power cables, molded M23 style connector, 8 pin, $\mathrm{xxx}=$ length in feet. Standard lengths $15,25,50$ feet (DC Stator)	CBL-TTIPC-SMI-xxx	
Power cable with M23 6 pin $\mathrm{xxx}=$ Length in feet, std lengths $15,25,50,75,100$ (AC Stator)	CBL-T2IPC-SMI-xxx	
I/O cables, molded M23 style connector, 19 pin, $\mathrm{xx}=$ length in feet. Standard lengths $15,25,50$ feet	CBL-TTIOC-SMI-xxx	
Communications Accessories - RECOMMENDED PC COMMUNCIATIONS CABLE	CBL-T2USB485-M8-006	
PC to TTX Communications cable-USB/RS485 to M8 connector, 6 feet	CBL-T2USB485-M8-015	
PC to TTX Communications cable-USB/RS485 to M8 connector, 15 feet	TT485SP	
Multi-Drop RS485 Accessories	CBL-TTDAS-006	
RS485 splitter - M8 Pin plug to double M8 Socket receptacle	CBL-TTDAS-015	
Multidrop Communications Cable for use with TT485SP, 6 feet		
Multidrop Communications Cable for use with TT485SP, 15 feet	CBL-TTCOM-xxx	
Multi-Purpose Communications Accessories		
Communication cable, PICO type connector, 4 pin, $\mathrm{xxx}=$ length in meters, Standard lengths $4.572,7.62,15.24$ meters		

CBL-T2USB485-M8-006 or 015
Our recommended communications cable. No special drivers or setup required for use with MS Windows ${ }^{\text {™ }}$.

CBL-TTIPC-SMI-xxx / CBL-T2IPC-SMI-xxx

CBL-TTDAS-006 or 015 For use with TT485SP for multi-drop applications.

CBL-TTIOC-SMI-xxx

CBL-TTCOM-xxx Use with CBL-T2USB485-xxx for long cable runs.

TT485SP
RS485 communications splitter. Use to daisy-chainmultiple TTX actuators.

Actuator Type

TTX = Integrated Drive / Motor / Actuator
AAA = Actuator Frame Size
$080=80 \mathrm{~mm}$ (3.15 in)
BBB = Stroke Length
$100=100 \mathrm{~mm}$
$150=150 \mathrm{~mm}$
$300=300 \mathrm{~mm}$
$450=450 \mathrm{~mm}$
CC =Screw Lead
$01=0.10$ in (2.54 mm)
$02=0.20$ in (5.08 mm)
$05=0.50$ in $(12.7 \mathrm{~mm})$
D = Winding Voltage
4 = 230 VAC Max
D $=48$ VDC Max

E = Rod End Thread

A = Male Metric
B = Female Metric ${ }^{2}$
M = Male, English) ${ }^{2}$
F = Female, English ${ }^{2}$
F = Internal Holding Brake
$\mathrm{N}=$ No Brake
$B=$ Internal Holding Brake, Electrically Released
G = Amplifier Voltage
A $=200$ VAC Class
D $=48$ VDC Class
HHH = Option Boards
SIO = Standard I/O Interconnect
$\mathrm{IA} 4=4-20 \mathrm{mAAnalog} \mathrm{I} / \mathrm{O}$
EIP $=$ SIO plus Ethernet/IP w/M12 connector PIO = SIO plus Profinet IO w/M12 connector TCP = SIO plus Modbus TCP w/M12 connector

M = Mounting Options

$N=$ None
1 = Front Flange, Metric
3 = Tapped Face, Metric
$5=$ Rear Clevis, Metric
F = Front Flange, English ${ }^{2}$
C = Rear Clevis, English ${ }^{2}$

N = Accessory Options
$N=$ None
A = Anti-Rotate Assembly
L = Limit Switch Housing / Anti-Rotate Assembly ${ }^{1}$
${ }^{1}$ Switches sold separately
${ }^{2}$ Available option. May add lead time.

FTX Series

HIGH FORCE ACTUATOR

Hydraulic cylinder replacement Rugged and reliable Powerful and compact Clean and efficient

FTX Series
 High Force Actuators

Hydraulic Cylinder Replacement

Hydraulic cylinders provide long life and high force in a small package size. The FTX Series high force electric actuators were designed specifically to allow migration from traditional hydraulic actuation to electric. Based on planetary roller screw technology, the FTX offers life and force density not attainable with more common ball screw based electric actuators. With up to 15 X the life and 2 X the force density, the roller screw based FTX is the right choice when migrating from hydraulic to electric actuation.

Rugged and Reliable

Hydraulic cylinders are commonly installed in harsh industrial settings. Therefore all FTX Series models are environmentally sealed to IP65. In addition, its planetary roller screw mechanism withstands significantly higher shock loads than weaker ball screw alternatives. Migrate to electric with confidence knowing the FTX Series is every bit as rugged and reliable as the hydraulics they are designed to replace.

Minimal Maintenance

More and more machine builders are looking to eliminate the mess and downtime associated with hydraulic fluid leaks. Electric actuation not only eliminates the problems associated with fluid leaks, it offers significantly higher levels of performance and flexibility than is possible even with servo-hydraulic solutions. FTX Series roller screw actuators allow machine builders to meet the ever-increasing performance demands of their customers while minimizing or eliminating the maintenance issues associated with traditional hydraulic solutions.

Operating Conditions and Usage			
Accuracy:			
Screw Travel Variation	$\mathrm{mm}(\mathrm{in})$	$0.030(0.0012)$	
Screw Lead Error	$\mathrm{mm} / 300 \mathrm{~mm}$ (in/ft)	$0.025(0.001)$	
Screw Lead Backlash	$\mathrm{mm}(\mathrm{in})$	$0.06(0.002)$	
Ambient Conditions:			
Standard Ambient Temperature	${ }^{\circ} \mathrm{C}$	0° to 85°	
IP Rating		IP65S	

Product Features

Mechanical Specifications

FTX095

		05	10	20
Screw Lead	mm	5	10	20
	in	0.197	0.394	0.787
Maximum Force	kN	22.2	22.2	22.2
	lbf	5,000	5,000	5,000
Life at Maximum Force	km	392	626	1440
	in $\times 10^{6}$	15.4	24.6	56.7
C_{a} (Dynamic Load Rating)	kN	95.2	88.3	92.5
	lbf	21,400	19,850	20,800
Maximum Input Torque	Nm	22.1	44.3	88.5
	lbf-in	196	392	783
Max Rated RPM @ Input Shaft	RPM	4,500	4,500	4,500
Maximum Linear Speed @ Maximum Rated RPM	$\mathrm{mm} / \mathrm{sec}$	373	750	1,500
	$\mathrm{in} / \mathrm{sec}$	14.7	29.5	59.3
Friction Torque (Typical)	Nm	1.12	1.12	1.12
	Ibf-in	10	10	10

Weights kg (lbs)

Base Actuator Weight (Zero Stroke)	kg	10
	lb	21
Actuator Weight Adder (Per 25 mm of stroke)	kg	0.39
	lb	0.87
Adder for Inline (excluding motor)	kg	2.9
	lb	6.5
Adder for Parallel Drive (excluding motor)	kg	13.1
	lb	28.9
Adder for Front Flange	kg	1.9
	lb	4.2
Adder for Rear Clevis	kg	5.3
	lb	11.7
Adder for Rear Eye	kg	5.1
	lb	11.3
Adder for Rear Trunnion	kg	1.9
	lb	4.3

Base Unit Inertia		Zero Stroke [kg-m² (lbf-in-sec²)]	Add per 25 mm [kg-m² (lbf-in-sec ${ }^{2}$)]
5 mm Lead		$8.27 \times 10^{-4}\left(7.32 \times 10^{-3}\right)$	$2.19 \times 10^{-6}\left(1.94 \times 10^{-5}\right)$
10 mm Lead		$8.33 \times 10^{-4}\left(7.37 \times 10^{-3}\right)$	$2.42 \times 10^{-6}\left(2.14 \times 10^{-5}\right)$
20 mm Lead		$8.57 \times 10^{-4}\left(7.58 \times 10^{-3}\right)$	$3.31 \times 10^{-6}\left(2.93 \times 10^{-5}\right)$
Inline Drive Inertia	Inline Unit w/Motor Coupling	Inline Unit - w/Motor Coupling For Gearbox Mount	Add per 25 mm
5 mm Lead	$9.27 \times 10^{-4}\left(8.20 \times 10^{-3}\right)$	$1.09 \times 10^{-3}\left(9.62 \times 10^{-3}\right)$	$2.19 \times 10^{-6}\left(1.94 \times 10^{-5}\right)$
10 mm Lead	$9.33 \times 10^{-4}\left(8.26 \times 10^{-3}\right)$	$1.09 \times 10^{-3}\left(9.67 \times 10^{-3}\right)$	$2.42 \times 10^{-6}\left(2.14 \times 10^{-5}\right)$
20 mm Lead	$9.57 \times 10^{-4}\left(8.47 \times 10^{-3}\right)$	$1.12 \times 10^{-3}\left(9.89 \times 10^{-3}\right)$	$3.31 \times 10^{-6}\left(2.93 \times 10^{-5}\right)$
Parallel Drive Inertia		1:1 Reduction	2:1 Reduction
5 mm Lead (zero stroke)		$4.90 \times 10^{-3}\left(4.34 \times 10^{-2}\right)$	$2.22 \times 10^{-3}\left(1.97 \times 10^{-2}\right)$
Add per 25 mm stroke		$2.19 \times 10^{-6}\left(1.94 \times 10^{-5}\right)$	$5.48 \times 10^{-7}\left(4.85 \times 10^{-6}\right)$
10 mm Lead (zero stroke)		$4.91 \times 10^{-3}\left(4.34 \times 10^{-2}\right)$	$2.23 \times 10^{-3}\left(1.97 \times 10^{-2}\right)$
Add per 25 mm stroke		$2.42 \times 10^{-6}\left(2.14 \times 10^{-5}\right)$	$6.04 \times 10^{-7}\left(5.34 \times 10^{-6}\right)$
20 mm Lead (zero stroke)		$4.93 \times 10^{-3}\left(4.37 \times 10^{-2}\right)$	$2.23 \times 10^{-3}\left(1.98 \times 10^{-2}\right)$
Add per 25 mm stroke		$3.31 \times 10^{-6}\left(2.93 \times 10^{-5}\right)$	$8.28 \times 10^{-7}\left(7.33 \times 10^{-6}\right)$

FTX125

		05	10
Screw Lead	mm	5	10
	in	0.197	0.394
Maximum Force	kN	44.5	44.5
	Ibf	10,000	10,000
Life at Maximum Force	km	249.2	486.3
	in $\times 10^{6}$	9.81	19.14
C_{a} (Dynamic Load Rating)	kN	163.7	162.4
	Ibf	36,800	36,500
Maximum Input Torque	Nm	46.5	82.3
	Ibf-in	412	728
Max Rated RPM @ Input Shaft	RPM	3,500	3,500
Maximum Linear Speed @ Maximum Rated RPM	$\mathrm{mm} / \mathrm{sec}$	292	583
	in/sec	11.5	23
Friction Torque (Typical)	Nm	2.23	2.23
	lbf-in	20	20

Weights kg (lbs)

Base Actuator Weight (Zero Stroke)	kg	21
	lb	47
Actuator Weight Adder	kg	0.84
(Per $\mathbf{2 5}$ mm of stroke)	lb	1.85
Adder for Inline (excluding motor)	kg	6.8
	lb	15.0
Adder for Parallel Drive (excluding motor)	kg	25.6
	lb	56.5
Adder for Front Flange	kg	3.6
	lb	7.9
Adder for Rear Clevis	kg	6.5
	lb	14.3
Adder for Rear Eye	kg	6.3
Adder for Rear Trunnion	lb	13.8

Base Unit Inertia		Zero Stroke [kg-m² (lbf-in-sec ${ }^{2}$)]	Add per 25 mm [kg-m² (lbf-in-sec ${ }^{2}$)]
5 mm Lead		$2.55 \times 10^{-3}\left(2.26 \times 10^{-2}\right)$	$4.62 \times 10^{-5}\left(4.09 \times 10^{-4}\right)$
10 mm Lead		$2.56 \times 10^{-3}\left(2.27 \times 10^{-2}\right)$	$4.65 \times 10^{-5}\left(4.12 \times 10^{-4}\right)$
Inline Drive Inertia	<32 mm Motor Shaft Diameter	> 32 mm Motor Shaft Diameter	Add per 25 mm
5 mm Lead	$2.81 \times 10^{-3}\left(2.49 \times 10^{-2}\right)$	$3.35 \times 10^{-3}\left(2.97 \times 10^{-2}\right)$	$4.62 \times 10^{-5}\left(4.09 \times 10^{-4}\right)$
10 mm Lead	$2.82 \times 10^{-3}\left(2.50 \times 10^{-2}\right)$	$3.36 \times 10^{-3}\left(2.98 \times 10^{-2}\right)$	$4.65 \times 10^{-5}\left(4.12 \times 10^{-4}\right)$
Parallel Drive Inertia		1:1 Reduction	2:1 Reduction
5 mm Lead (zero stroke)		$9.43 \times 10^{-3}\left(8.34 \times 10^{-2}\right)$	$4.66 \times 10^{-3}\left(4.12 \times 10^{-2}\right)$
Add per 25 mm stroke		$4.62 \times 10^{-5}\left(4.09 \times 10^{-4}\right)$	$1.15 \times 10^{-5}\left(1.02 \times 10^{-4}\right)$
10 mm Lead (zero stroke)		$9.44 \times 10^{-3}\left(8.35 \times 10^{-2}\right)$	$4.66 \times 10^{-3}\left(4.13 \times 10^{-2}\right)$
Add per 25 mm stroke		$4.65 \times 10^{-5}\left(4.12 \times 10^{-4}\right)$	$1.16 \times 10^{-5}\left(1.03 \times 10^{-4}\right)$

FTX160

		06	12	30
Screw Lead	mm	6	12	30
	in	0.236	0.472	1.181
Maximum Force	kN	89.0	89.0	89.0
	lbf	20,000	20,000	20,000
Life at Maximum Force	km	154.9	416.6	358.9
	in $\times 10^{6}$	6.1	16.4	21.2
C_{a} (Dynamic Load Rating)	kN	263.7	290.0	233.0
	lbf	59,275	65,200	52,400
Maximum Input Torque	Nm	106	212	531
	Ibf-in	940	1,880	4,699
Max Rated RPM @ Input Shaft	RPM	2,000	2,000	2,000
Maximum Linear Speed @ Maximum Rated RPM	$\mathrm{mm} / \mathrm{sec}$	201	401	1000
	in/sec	7.9	15.8	39.0
Friction Torque (Typical)	Nm	4.54	4.54	4.54
	Ibf-in	40	40	40

Weights kg (lbs)

Base Actuator Weight (Zero Stroke)	kg	49
	lb	108
Actuator Weight Adder	kg	1.62
(Per $\mathbf{2 5}$ mm of stroke)	lb	3.6
Adder for Inline (excluding motor)	kg	14.2
	lb	31.5
Adder for Parallel Drive (excluding motor)	kg	53.1
	lb	117.8
Adder for Front Flange	kg	7.4
	lb	16.4
Adder for Rear Clevis	kg	21.2
Adder for Rear Eye	lb	48.8
	kg	22.4
	lb	49.7

Base Unit Inertia		Zero Stroke [kg-m² (bf-in-sec ${ }^{2}$)]	Add per 25 mm [kg-m² (lbf-in-sec ${ }^{2}$)]
6 mm Lead		$1.35 \times 10^{-2}\left(1.19 \times 10^{-1}\right)$	$2.57 \times 10^{-4}\left(2.27 \times 10^{-3}\right)$
12 mm Lead		$1.35 \times 10^{-2}\left(1.20 \times 10^{-1}\right)$	$2.58 \times 10^{-4}\left(2.28 \times 10^{-3}\right)$
30 mm Lead		$1.38 \times 10^{-2}\left(1.22 \times 10^{-1}\right)$	$2.66 \times 10^{-4}\left(2.36 \times 10^{-3}\right)$
Inline Drive Inertia	<32 mm Motor Shaft Diameter	>32 mm Motor Shaft Diameter	Add per 25 mm
6 mm Lead	$1.47 \times 10^{-2}\left(1.30 \times 10^{-1}\right)$	$1.67 \times 10^{-2}\left(1.48 \times 10^{-1}\right)$	$2.57 \times 10^{-4}\left(2.27 \times 10^{-3}\right)$
12 mm Lead	$1.47 \times 10^{-2}\left(1.30 \times 10^{-1}\right)$	$1.68 \times 10^{-2}\left(1.49 \times 10^{-1}\right)$	$2.58 \times 10^{-4}\left(2.28 \times 10^{-3}\right)$
30 mm Lead	$1.50 \times 10^{-2}\left(1.33 \times 10^{-1}\right)$	$1.71 \times 10^{-2}\left(1.51 \times 10^{-1}\right)$	$2.66 \times 10^{-4}\left(2.36 \times 10^{-3}\right)$
Parallel Drive Inertia		1:1 Reduction	2:1 Reduction
6 mm Lead (zero stroke)		$5.27 \times 10^{-2}\left(4.67 \times 10^{-1}\right)$	$2.30 \times 10^{-2}\left(2.04 \times 10^{-1}\right)$
Add per 25 mm stroke		$2.57 \times 10^{-4}\left(2.27 \times 10^{-3}\right)$	$6.42 \times 10^{-5}\left(5.68 \times 10^{-4}\right)$
12 mm Lead (zero stroke)		$5.28 \times 10^{-2}\left(4.67 \times 10^{-1}\right)$	$2.30 \times 10^{-2}\left(2.04 \times 10^{-1}\right)$
Add per 25 mm stroke		$2.58 \times 10^{-4}\left(2.28 \times 10^{-3}\right)$	$6.45 \times 10^{-5}\left(5.71 \times 10^{-4}\right)$
30 mm Lead (zero stroke)		$5.30 \times 10^{-2}\left(4.69 \times 10^{-1}\right)$	$2.31 \times 10^{-2}\left(2.05 \times 10^{-1}\right)$
Add per 25 mm stroke		$2.66 \times 10^{-4}\left(2.36 \times 10^{-3}\right)$	$6.66 \times 10^{-5}\left(5.89 \times 10^{-4}\right)$

FTX215

		06	12	30
Screw Lead	mm	6	12	30
	in	0.236	0.472	1.181
Maximum Force	kN	177.9	177.9	177.9
	lbf	40,000	40,000	40,000
Life at Maximum Force	km	78.7	161.8	414.3
	in $\times 10^{6}$	3.1	6.4	16.3
C_{a} (Dynamic Load Rating)	kN	398	423	376
	lbf	89,500	95,200	84,700
Maximum Input Torque	Nm	243	425	976
	Ibf-in	2,148	3,760	8,642
Max Rated RPM @ Input Shaft	RPM	1,750	1,750	1,750
Maximum Linear Speed @ Maximum Rated RPM	$\mathrm{mm} / \mathrm{sec}$	175	351	875
	in/sec	6.9	13.8	34.4
Friction Torque (Typical)	Nm	5.65	5.65	5.65
	lbf-in	50	50	50

Weights kg (lbs)

Base Actuator Weight (Zero Stroke)	kg	103
	lb	227
Actuator Weight Adder (Per 25 mm of stroke)	kg	2.70
	lb	5.96
Adder for Inline (excluding motor)	kg	38.6
	lb	85.1
Adder for Parallel Drive (excluding motor)	kg	62.3
	lb	137.3
Adder for Front Flange	kg	26.7
	lb	58.8
Adder for Rear Clevis	kg	32.5
	lb	71.6
Adder for Rear Eye	kg	32.5
	lb	71.6
Adder for Rear Trunnion	kg	9.6
	lb	21.2

Base Unit Inertia		Zero Stroke [kg-m² (lbf-in-sec ${ }^{2}$)]	Add per 25 mm [kg-m² (lbf-in-sec ${ }^{2}$)]
6 mm Lead		$4.25 \times 10^{-2}\left(3.76 \times 10^{-1}\right)$	$8.00 \times 10^{-4}\left(7.08 \times 10^{-3}\right)$
12 mm Lead		$4.26 \times 10^{-2}\left(3.77 \times 10^{-1}\right)$	$8.02 \times 10^{-4}\left(7.10 \times 10^{-3}\right)$
30 mm Lead		$4.31 \times 10^{-2}\left(3.82 \times 10^{-1}\right)$	$8.15 \times 10^{-4}\left(7.21 \times 10^{-3}\right)$
Inline Drive Inertia	$<55 \mathrm{~mm}$ Motor Shaft Diameter	$>55 \mathrm{~mm}$ Motor Shaft Diameter	Add per 25 mm
6 mm Lead	$4.43 \times 10^{-2}\left(3.92 \times 10^{-1}\right)$	$6.15 \times 10^{-2}\left(5.44 \times 10^{-1}\right)$	$8.00 \times 10^{-4}\left(7.08 \times 10^{-3}\right)$
12 mm Lead	$4.44 \times 10^{-2}\left(3.93 \times 10^{-1}\right)$	$6.16 \times 10^{-2}\left(5.45 \times 10^{-1}\right)$	$8.02 \times 10^{-4}\left(7.10 \times 10^{-3}\right)$
30 mm Lead	$4.49 \times 10^{-2}\left(3.98 \times 10^{-1}\right)$	$6.21 \times 10^{-2}\left(5.50 \times 10^{-1}\right)$	$8.15 \times 10^{-4}\left(7.21 \times 10^{-3}\right)$
Parallel Drive Inertia		1:1 Reduction	2:1 Reduction
6 mm Lead (zero stroke)		$9.42 \times 10^{-2}\left(8.34 \times 10^{-1}\right)$	$3.50 \times 10^{-2}\left(3.10 \times 10^{-1}\right)$
Add per 25 mm stroke		$8.00 \times 10^{-4}\left(7.08 \times 10^{-3}\right)$	$2.00 \times 10^{-4}\left(1.77 \times 10^{-3}\right)$
12 mm Lead (zero stroke)		$9.43 \times 10^{-2}\left(8.34 \times 10^{-1}\right)$	$3.50 \times 10^{-2}\left(3.10 \times 10^{-1}\right)$
Add per 25 mm stroke		$8.02 \times 10^{-4}\left(7.10 \times 10^{-3}\right)$	$2.01 \times 10^{-4}\left(1.78 \times 10^{-3}\right)$
30 mm Lead (zero stroke)		$9.48 \times 10^{-2}\left(8.39 \times 10^{-1}\right)$	$3.52 \times 10^{-2}\left(3.11 \times 10^{-1}\right)$
Add per 25 mm stroke		$8.15 \times 10^{-4}\left(7.21 \times 10^{-3}\right)$	$2.04 \times 10^{-4}\left(1.80 \times 10^{-3}\right)$

Estimated Service Life

Service Life Estimate Assumptions:

- Sufficient quality and quantity of lubrication is maintained throughout service life
- Bearing and screw temperature between $20^{\circ} \mathrm{C}$ and $40^{\circ} \mathrm{C}$
- No mechanical hard stops (external or internal) or impact loads
- No external side loads
- Does not apply to short stroke, high frequency applications such as fatigue testing or short stroke, high force applications such as pressing.

Dimensions

Pre-sale drawings and models are representative and are subject to change.

[^3]| FTX160 BASE ACTUATOR
 ALL DIMENSIONS IN MILLIMETERS | |
| :---: | :---: |
| 1 (FRONT FLANGE) | 5 (REAR CLEVIS) |
| 7 (REAR EYE) | 9 (REAR TRUNNION) |
| N10 (INLINE MOUNT) | P10/P20 (PARALLEL MOUNT) |
| ROD | S |

[^4]

Pre-sale drawings and models are representative and are subject to change.

Rod Eye, Spherical

Case Dimensions

A	mm	94	118	156	203
	in	3.7	4.6	6.1	8.0
B	mm	94	118	156	203
	in	3.7	4.6	6.1	8.0
C	mm	4.9	5.6	5.5	6.4
	in	0.19	0.22	0.22	0.25
D	mm	1.1	1.8	1.7	2.5
	in	0.4	0.07	0.07	0.10
E	mm	5.2	5.2	5.3	5.2
	in	0.21	0.21	0.21	0.21
F	mm	6.6	6.6	6.6	6.6
	in	0.26	0.26	0.26	0.26

Rod Clevis

		FTX095	FTX125	FTX160	FTX215
CE	mm	60.0	99.0	113.0	168.0
	in	2.36	3.90	4.45	6.61
\varnothing CK	mm	20.0 h 9	36.0 h 9	45.0 h 9	70.0 h 9
	in	0.79	1.42	1.77	2.76
CL	mm	62.0	103.0	123.0	163.0
	in	2.44	4.06	4.84	6.42
CM	mm	30.0	50.0	60.0	80.0
	in	1.18	1.97	2.36	3.15
\varnothing ER (max)	mm	29.0	50.0	53.0	78.0
	in	1.14	1.97	2.09	3.07
LE (min)	mm	32.0	54.0	57.0	83.0
	in	1.26	2.13	2.24	3.27
KK		M20X1.5 6H	M33X2.0 6H	M42X2.0 6H	M64X3.0 6H

Standard Motor/Gearbox Mount Codes for the FTX

FTX095 Motor / Gearbox Mounts

FTX125 Motor / Gearbox Mounts

None		Inline				Parallel 1:1				Parallel 2:1					
				Dimension in mm				Dimension in mm				Dimension in mm			
Motor Flange Code		Motor Flange Code		Bolt Circle 85	Pilot Diam. 70	Motor Flange Code		$\begin{gathered} \text { Bolt } \\ \text { Circle } \end{gathered}$	$\begin{array}{\|c\|} \hline \begin{array}{r} \text { Pilot } \\ \text { Diam. } \end{array} \\ \hline 70 \\ \hline \end{array}$	Motor Flange Code		BoltCircle	Pilot Diam. 70		
NMT-	00	N10-	05			P10-	05			P20-	05				
		N10-	10	100	80	P10-	10	100	80	P20-	10	100	80		
		N10-	12	130	110	P10-	12	130	110	P20-	12	130	110		
		N10-	14	145	110	P10-	14	145	110	P20-	14	145	110		
		N10-	18	120	90	P10-	18	120	90	P20-	19	165	130		
		N10-	19	165	130	P10-	19	165	130	P20-	20	200	114.3		
		N10-	20	200	114.3	P10-	20	200	114.3	P20-	21	215	130		
		N10-	21	215	130	P10-	21	215	130	P20-	23	215	180		
		N10- 23		215	180	P10-	23	215	180						
Motor Shaft		Motor Shaft Code		Shaft Diam.	Key Width	Motor Shaft code		Shaft Diam.	Key Width	Motor Shaft Code		Shaft Diam.	Key Width		
00		AA		24	8	AA		24	8	AA		24	8		
		AB		28	10	AB		28	10	AB		28	10		
		BA		22	6	BA		22	6	BA		22	6		
		DA		20	6	EA		20	6	DA		20	6		
		EA		19	6			19	6	EA		19	6		
		LA		28	8	LA		28	8	LA		28	8		
		MA		32	10	MA		32	10	MA		32	10		
		NA		35	10	NA		35	10	NA		35	10		
		PA		38	10	PA		38	10	YA		24	10		
		RA		42	12	RA		42	12						
		SA		42	10			42	10						
		YA		24	10	YA		24	10						
Shaft Length		Shaft Length				Shaft Length				Shaft Length					
000		$\begin{aligned} & 040,046,049, \\ & 050,055,058, \\ & 060,063,065, \\ & 068,072,080 \\ & 082,088,097, \\ & 100,102,105, \\ & 112,113 \end{aligned}$		* Pick closest shaft length within 2 mm if your exact length is not listed		048-099		* Allowable shaft length range in 1 mm increments		048-099		* Allowable shaft length range in 1 mm increments			

FTX160 Motor / Gearbox Mounts

AAA $=$ Frame Size
$095=95 \mathrm{~mm}$
$125=125 \mathrm{~mm}$
$160=160 \mathrm{~mm}$
$215=215 \mathrm{~mm}$
BBBB $=$ Stroke Length
$0150=150 \mathrm{~mm}$
$0300=300 \mathrm{~mm}$
$0600=600 \mathrm{~mm}$
$0900=900 \mathrm{~mm}$ (FTX095, FTX125, FTX160)
CC $=$ Screw Lead
$05=5 \mathrm{~mm}$ (FTX095, FTX125)
$06=6 \mathrm{~mm}$ (FTX160, FTX215)
$10=10 \mathrm{~mm}$ (FTX095, FTX125)
$12=12 \mathrm{~mm}$ (FTX160, FTX215)
$20=20 \mathrm{~mm}$ (FTX095)
$30=30 \mathrm{~mm}$ (FTX160, FTX215)
D $=$ Lubrication Type
$1=$ Grease
$2=$ Oil

$E=$ Rod End Thread
 $A=$ Male, Metric
 B = Female, Metric
 M = Male, English ${ }^{3}$
 F = Female, English ${ }^{3}$

FFF $=$ Motor Mounting Configurations ${ }^{1}$
NMT = None, base unit only
$\mathrm{N} 10=$ Inline, includes shaft coupling
P10 $=$ Parallel, 1:1 belt reduction
P20 $=$ Parallel, 2:1 belt reduction
GG = Motor/Gearbox Flange Code
See standard motor/gearbox mounting code dimension sheet

HH = Motor Shaft Code
See standard motor/gearbox mounting code dimension sheet

III = Shaft Length
See standard motor/gearbox mounting code dimension sheet

M = Mounting Options

$N=$ None
1 = Front Flange, Metric
$5=$ Rear Clevis, Metric ${ }^{2}$
7 = Rear Eye, Metric ${ }^{2}$
$9=$ Rear Trunnion, Metric
F = Front Flange, English ${ }^{3}$
C = Rear Clevis, English ${ }^{3}$ (Not available on FTX215)
$\mathrm{G}=$ Rear Clevis, Metric ${ }^{3}$ (Not available on FTX125 or FTX215)
$\mathrm{N}=$ Other Options
$N=$ None
L = Limit Switches*
*Ordered Separately

For options or specials not listed above, please contact Exlar

NOTES:

1. Always discuss your motor selection with your local sales representative.
2. Not available with inline or NMT motor mount, contact your local sales representative.
3. Available option. May add lead time

FTX Series Accessories

Exlar Part Number	Switches Type
43403	Normally Open PNP Limit Switch (10-30 VDC, 1m. 3 wire embedded cable)
43404	Normally Closed PNP Limit Switch (10-30 VDC, 1m. 3 wire embedded cable)
67634	Normally Open NPN Limit Switch (10-30 VDC, 1 m .3 wire embedded cable)
67635	Normally Closed NPN Limit Switch (10-30 VDC, 1m. 3 wire embedded cable)

FTP Series

HIGH FORCE ELECTRIC PRESS ACTUATOR

FTP Series

High Force Electric Press Actuators

Hydraulic Press Replacement

Based on planetary rollers screw technology, the FTP Series high force electric press actuators were designed to provide very high force in a small package size making them an ideal alternative to hydraulic cylinders in pressing applications. The FTP offers force density not attainable with more common ball screw based electric actuators, up to $15 X$ the life and $2 X$ the force density in most cases.

Programmable and Accurate

Attaining any kind of accuracy with a traditional hydraulic solution requires complicated servo valves that are difficult to set up and need frequent adjustment for optimum performance. Once set, changeover to a different part or mode of operation is equally as troublesome. The all-electric FTP Series utilizes commonly understood servo motor technology, offering accuracy, control and flexibility not available with hydraulics.

Reliable and Efficient

The FTP Series high force electric press actuators allow machine builders to meet the ever-increasing performance demands of their customers while minimizing or eliminating the maintenance issues and downtime associated with traditional hydraulic solutions. Their programmability and flexibility significantly reduces changeover time between production runs enabling smaller batch sizes, and they typically consume 25\% less energy than a typical hydraulic solution. Increase your operational efficiency today by switching to the FTP Series.

Operating Conditions and Usage		
Accuracy:		
Screw Travel Variation	$\mathrm{mm}(\mathrm{in})$	$0.030(0.0012)$
Screw Lead Error	$\mathrm{mm} / 300 \mathrm{~mm}$ (in/ft)	$0.025(0.001)$
Screw Lead Backlash	$\mathrm{mm}(\mathrm{in})$	$0.06(0.002)$
Ambient Conditions:		
Standard Ambient Temperature	${ }^{\circ} \mathrm{C}$	0° to 85°
IP Rating		IP65S

Product Features

Mechanical Specifications

FTP160

Weights kg (lbs)

Base Actuator Weight (Zero Stroke)	kg	56
Actuator Weight Adder	lb	124
(Per $\mathbf{2 5}$ mm of stroke)	kg	1.73
Adder for Inline (excluding motor)	lb	3.8
	kg	14.2
Adder for Parallel Drive (excluding motor)	lb	30.7
	kg	53.1
lb	117.8	
	kg	19.0

Base Unit Inertia		Zero Stroke [kg-m² (lbf-in-sec ${ }^{2}$)]	Add per 25 mm [kg-m ${ }^{2}$ ($\mathrm{lbf-in}-\mathrm{sec}^{2}$)]
12 mm Lead		$1.35 \times 10^{-2}\left(1.20 \times 10^{-1}\right)$	$2.58 \times 10^{-4}\left(2.28 \times 10^{-3}\right)$
Inline Drive Inertia	Inline Unit w/Motor Coupling	Inline Unit - w/Motor Coupling For Gearbox Mount	Add per 25 mm
12 mm Lead	$1.47 \times 10^{-2}\left(1.30 \times 10^{-1}\right)$	$1.68 \times 10^{-2}\left(1.49 \times 10^{-1}\right)$	$2.58 \times 10^{-4}\left(2.28 \times 10^{-3}\right)$
Parallel Drive Inertia		1:1 Reduction	Add per 25 mm
12 mm Lead (zero stroke)		$5.28 \times 10^{-2}\left(4.67 \times 10^{-1}\right)$	$2.58 \times 10^{-4}\left(2.28 \times 10^{-3}\right)$

FTP215

		12
Screw Lead	mm	12
	in	0.472
Maximum Force (Extension)	kN	355.8
	lbf	80,000
Maximum Force (Retraction)	kN	177.9
	lbf	40,000
Life at Maximum Force (Minimum)	Press Cycles	1.6 Million
Maximum Full Load Press Stroke	mm	12
	in	0.47
C_{a} (Dynamic Load Rating)	kN	423.5
	lbf	95,200
Maximum Input Torque	Nm	850
	lbf-in	7,520
Max Rated RPM @ Input Shaft	RPM	1,750
Maximum Linear Speed @ Maximum Rated RPM	$\mathrm{mm} / \mathrm{sec}$	351
	in/sec	13.8
Friction Torque (Typical)	Nm	5.65
	lbf-in	50

Weights kg (lbs)

Base Actuator Weight (Zero Stroke)	kg	127
Actuator Weight Adder	lb	280
(Per $\mathbf{2 5}$ mm of stroke)	kg	2.7
Adder for Inline (excluding motor)	lb	5.96
	kg	38.6
Adder for Parallel Drive (excluding motor)	lb	85.1
	kg	62.3
Adder for Front Flange	lb	137.35

Base Unit Inertia		Zero Stroke [kg-m² (lbf-in-sec ${ }^{2}$)]	Add per 25 mm [kg-m² (lbf-in-sec ${ }^{2}$)]
12 mm Lead		$4.26 \times 10^{-2}\left(3.77 \times 10^{-1}\right)$	$8.02 \times 10^{-4}\left(7.10 \times 10^{-3}\right)$
Inline Drive Inertia	Inline Unit w/Motor Coupling	Inline Unit - w/Motor Coupling For Gearbox Mount	Add per 25 mm
12 mm Lead	$4.44 \times 10^{-2}\left(3.93 \times 10^{-1}\right)$	$6.16 \times 10^{-2}\left(5.45 \times 10^{-1}\right)$	$8.02 \times 10^{-4}\left(7.10 \times 10^{-3}\right)$
Parallel Drive Inertia		1:1 Reduction	Add per 25 mm
12 mm Lead (zero stroke)		$9.43 \times 10^{-2}\left(8.34 \times 10^{-1}\right)$	$8.02 \times 10^{-4}\left(7.10 \times 10^{-3}\right)$

Data Curves

Estimated Service Life

The underlying formula that defines this value is:
$\mathrm{L}_{10}=$ Lifetime estimate in millions of cycles, where:
$C_{a}=$ Dynamic load rating (lbf)
$F_{\text {press }}=$ Press force
(press distance $\leq 12 \mathrm{~mm}$)

$$
L_{10}=\left(\frac{C_{a}}{F_{\text {press }}}\right)^{3}
$$

Service Life Estimate Assumptions:

- Sufficient quality and quantity of lubrication is maintained throughout service life
- Bearing and screw temperature between $20^{\circ} \mathrm{C}$ and $40^{\circ} \mathrm{C}$
- No mechanical hard stops (external or internal) or impact loads
- No external side loads

FTP Press Sizing Guide

Exlar's FTP series actuators meet the most demanding pressing applications in the market. Successful applications include bearing press, stamping, and leak testing. Due to design considerations for the FTP series, the extreme forces are only achievable when extending the main rod. See manufacturer's specifications on page 70 for maximum force ratings for each actuator in the FTP series.

For any press force less than the maximum rating, calculate the estimated L_{10} life by using the calculation method listed. The press distance must not exceed the maximum rated press distance listed.

If your application is outside the specifications, please fill in the following table and chart. Send the completed document to cha_applications@curtisswright.com. Exlar's sales engineering team will review the application to determine if Exlar has a solution to meet the requirements.

Required Data for Press Applications Outside Listed Specifications

	Application Data	
Typical Press Force	kN	
Typical Press Stroke	mm	
Maximum Press Force	kN	
Maximum Press Stroke	mm	
Cycle Rate	Cycles/min	
Dwell Time After Each Cycle	s	
Life Expectancy	Months	

Sketch Profile of Typical Cycle

Dimensions

FTP160 BASE ACTUATOR
 ALL DIMENSIONS IN MILLIMETERS

Case Dimensions

		A	B	C	D	E	F
FTP160	mm	156	156	5.5	1.7	5.3	6.6
	in	6.1	6.1	0.22	0.07	0.21	0.26
FTP215	mm	203	203	6.4	2.5	5.2	6.6
	in	8.0	8.0	0.25	0.10	0.21	0.26

[E]
Detail 4X Sensor Groove

Standard Gearbox Mount Codes for the FTP
FTP160 Gearbox Mounts

None		Inline				Parallel 1:1			
				Dimension in mm				Dimension in mm	
Motor Flange Code		Motor Flange Code		Bolt Circle	Pilot Diam.	Motor Flange Code		Bolt Circle	Pilot Diam.
NMT-	00	N10-	19	165	130	P10-	19	165	130
		N10-	22	215	160	P10-	22	215	160

FTP215 Gearbox Mounts

AAA $=$ Frame Size		GG = Motor/Gearbox Flange Code
$160=160 \mathrm{~mm}$	D = Lubrication Type	See standard gearbox mounting code dimension sheet
$215=215 \mathrm{~mm}$	2 = Oil	
		HH = Motor Shaft Code
BBBB $=$ Stroke Length	$\mathrm{E}=$ Rod End Thread	See standard gearbox mounting code dimension sheet
$0150=150 \mathrm{~mm}$	A = Male, Metric	
$0300=300 \mathrm{~mm}$	B = Female, Metric	III = Shaft Length
$0600=600 \mathrm{~mm}$		See standard gearbox mounting code dimension sheet
$0900=900 \mathrm{~mm}$ (FTP160 only)	FFF = Motor Mounting Configurations ${ }^{1}$ NMT = None, base unit only	M = Mounting Option
CC = Screw Lead	N10 = Inline, includes shaft coupling	1 = Front Flange, Metric (Required)
$12=12 \mathrm{~mm}$	P10 = Parallel, 1:1 belt reduction	$\begin{aligned} & N=\text { Other Options } \\ & N=\text { None } \end{aligned}$

NOTES:

1. Always discuss your motor selection with your local sales representative.

FTP Series Accessories

Limit Switches	
Part Number	Description
43403	Normally Open PNP Limit Switch (10-30 VDC, 1 m .3 wire embedded cable)
43404	Normally Closed PNP Limit Switch (10-30 VDC, 1 m .3 wire embedded cable)
67634	Normally Open NPN Limit Switch (10-30 VDC, 1 m .3 wire embedded cable)
67635	Normally Closed NPN Limit Switch (10-30 VDC, 1m. 3 wire embedded cable)

Sizing and Selection of Exlar Linear and Rotary Actuators

Move Profiles

The first step in analyzing a motion control application and selecting an actuator is to determine the required move profile. This move profile is based on the distance to be traveled and the amount of time available in which to make that move. The calculations below can help you determine your move profile.

Each motion device will have a maximum speed that it can achieve for each specific load capacity. This maximum speed will determine which type of motion profile can be used to complete the move. Two common types of move profiles are trapezoidal and triangular. If the average velocity of the profile, is less than half the maximum velocity of the actuator, then triangular profiles can be used. Triangular Profiles result in the lowest possible acceleration and deceleration. Otherwise a trapezoidal profile can be used. The trapezoidal profile below with 3 equal divisions will result in 25% lower maximum speed and 12.5% higher acceleration and deceleration. This is commonly called a $1 / 3$ trapezoidal profile.

The following pages give the required formulas that allow you to select the proper Exlar linear or rotary actuator for your application. The first calculation explanation is for determining the required thrust in a linear application.

The second provides the necessary equations for determining the torque required from a linear or rotary application. For rotary applications this includes the use of reductions through belts or gears, and for linear applications, through screws.

Pages are included to allow you to enter your data and easily perform the required calculations. You can also describe your application graphically and send to Exlar for sizing. Reference tables for common unit conversions and motion system constants are included at the end of the section.

Trapezoidal Move Profile Triangular Move Profile

Linear Move Profile Calculations

Vmax $=$ max.velocity-in/sec (m/sec)
Vavg $=$ avg. velocity-in/sec (m/sec)
tacc $=$ acceleration time (sec)
tdec $=$ deceleration time (sec)
tcv = constant velocity (sec)
ttotal $=$ total move time (sec)
acc $=$ accel-in $/ \sec ^{2}\left(\mathrm{~m} / \mathrm{sec}^{2}\right)$
dec $=$ decel-in $/ \sec ^{2}\left(\mathrm{~m} / \mathrm{sec}^{2}\right)$
$\mathrm{cv}=$ constant vel.-in/sec (m/sec)
$\mathbf{D}=$ total move distance-in (m) or revolutions (rotary)

Standard Equations

Vavg = D / ttotal
If tacc = tdec Then: Vmax =
(ttotal//(total-tacc)(Vavg)
and
$D=A r e a ~ u n d e r ~ p r o f i l e ~ c u r v e ~$
$\mathbf{D}=($ ($2($ tacc $+\mathbf{t d e c})+\mathbf{t c v})(\mathbf{V} \max)$

Trapezoidal Equations

$$
\begin{aligned}
& \text { If tacc }=\mathbf{t c v}=\mathbf{t d e c} \text { Then: } \\
& \mathbf{V m a x}=1.5(\mathbf{V a v g}) \\
& \mathbf{D}=(2 / 3)(\text { ttotal })(\mathbf{V} \max) \\
& \text { acc }=\operatorname{dec}=\underline{\mathbf{V} \max } \\
& \text { tacc }
\end{aligned}
$$

Triangular Equations

$$
\begin{aligned}
\text { If tacc } & =\text { ttotal/2 Then: } \\
\text { Vmax } & =2.0(\mathbf{V a v g}) \\
\mathbf{D} & =(1 / 2)(\text { ttotal })(\mathbf{V} \max) \\
\text { acc }=\text { dec } & =\frac{\mathbf{V} \max }{\text { tacc }}
\end{aligned}
$$

```
Terms and (units)
THRUST = Total linear force-lbf (N)
    = Angle of inclination (deg)
    Ffriction = Force from friction-lbf (N)
        tacc = Acceleration time (sec)
        Facc =Acceleration force-lbf (N)
        v = Change in velocity-in/sec (m/s)
Fgravity = Force due to gravity-lbf (N)
    \mu Coefficient of sliding friction
Fapplied = Applied forces-lbf (N)
            (refer to table on page 136 for different materials)
        WL = Weight of Load-Ibf (N)
        g = 386.4: Acceleration of gravity - in/sec}\mp@subsup{}{}{2}(9.8 m/sec)
```


Thrust Calculation Equations

THRUST $=$ Ffriction $+[$ Facceleration $]+$ Fgravity + Fapplied
THRUST $=\mathbf{W L} \mu \cos \varnothing+[(\mathbf{W L} / 386.4)(v /$ tacc $)]+$ WLsinø + Fapplied
Sample Calculations: Calculate the thrust required to accelerate a 200 pound mass to 8 inches per second in an acceleration time of 0.2 seconds. Calculate this thrust at inclination angles(\varnothing) of $0^{\circ}, 90^{\circ}$ and 30°. Assume that there is a 25 pound spring force that is applied against the acceleration.
$\mathrm{WL}=200 \mathrm{lbm}, \mathrm{v}=8.0 \mathrm{in} / \mathrm{sec} .$, ta $=0.2 \mathrm{sec}$., Fapp. $=25 \mathrm{lbf}, \mu=0.15$

```
\varnothing=0
```

THRUST $=\mathbf{W L} L \mu \cos \varnothing+[(\mathbf{W L} / 386.4)(\mathbf{v} /$ tacc) $)]+\mathbf{W L s i n} \varnothing+$ Fapplied
$=(200)(0.15)(1)+[(200 / 386.4)(8.010 .2)]+(200)(0)+25$
$=30 \mathrm{lbs}+20.73 \mathrm{lbs}+0 \mathrm{lbs}+25 \mathrm{lbs}=75.73 \mathrm{lbs}$ force

```
\varnothing=90
```

THRUST $=\mathbf{W L} \mu \cos \varnothing+[(\mathbf{W L} / 386.4)(\mathbf{v} /$ taccc $)]+\mathbf{W L s i n} \varnothing+$ Fapplied
$=(200)(0.15)(0)+[(200 / 386.4)(8.0 / 0.2)]+(200)(1)+25$
$=0$ lbs +20.73 lbs +200 lbs +25 lbs $=245.73$ lbs force
$\varnothing=30^{\circ}$
THRUST $=\mathbf{W L} \mu \cos \varnothing+[(W L / 386.4)($ v/tacc) $)+\mathbf{W L s i n} \phi+$ Fapplied
$=(200)(0.15)(0.866)+[(200 / 386.4)(8.0 / 0.2)]+(200)(0.5)+25$
$=26 \mathrm{lbs}+20.73 \mathrm{lbs}+100+25=171.73 \mathrm{lbs}$ force

Thrust Calculations

Definition of thrust:

The thrust necessary to perform a specific move profile is equal to the sum of four components of force. These are the force due to acceleration of the mass, gravity, friction and applied forces such as cutting and pressing forces and overcoming spring forces.

Angle of Inclination

90°	Note: at $\varnothing=0^{\circ}$
	$\cos \varnothing=1 ; \sin \varnothing=0$
-90°	at $\varnothing=90^{\circ}$
	$\cos \varnothing=0 ; \sin \varnothing=1$

It is necessary to calculate the required thrust for an application during each portion of the move profile, and determine the worst case criteria. The linear actuator should then be selected based on those values. The calculations at the right show calculations during acceleration which is often the most demanding segment of a profile.

Motor Torque Calculations

When selecting an actuator system it is necessary to determine the required motor torque to perform the given application. These calculations can then be compared to the torque ratings of the given amplifier and motor combination that will be used to control the actuator's velocity and position.

When the system uses a separate motor and screw, like the FTX actuator, the ratings for that motor and amplifier are consulted. In the case of the GTX Series actuators with their integral brushless motors, the required torque divided by the torque constant of the motor (Kt) must be less than the current rating of the GTX or SLM motor.

Inertia values and torque ratings can be found in the GTX, FTX, and SLM/SLG Series product specifications.

For the GTX Series the screw and motor inertia are combined.

Motor with screw (GTX, FTX)

Motor with belt and pulley

Terms and (units)

```
\lambda = Required motor torque, Ibf-in (N-m)
\lambdaa = Required motor acceleration torque, lbf-in (N-m)
F = Applied force load, non inertial, lbf (kN)
\ell = Screw lead, in (mm)
R = Belt or reducer ratio
TL = Torque at driven load lbf-in (N-m)
vL = Linear velocity of load in/sec (m/sec)
\omegaL = Angular velocity of load rad/sec
\omegam = Angular velocity of motor rad/sec
\eta = Screw or ratio efficiency
g = Gravitational constant, 386.4 in/s}\mp@subsup{}{}{2}(9.75 m/\mp@subsup{s}{}{2}
a = Angular acceleration of motor, rad/s }\mp@subsup{}{}{2
m = Mass of the applied load, lb (N)
JL = Reflected Inertia due to load, Ibf-in-s}\mp@subsup{}{}{2}(N-m-\mp@subsup{s}{}{2}
Jr = Reflected Inertia due to ratio, lbf-in-s}\mp@subsup{\textrm{s}}{}{2}(\textrm{N}-\textrm{m}-\mp@subsup{\textrm{s}}{}{2}
Js = Reflected Inertia due to external screw, lbf-in-s}\mp@subsup{}{}{2}(N-m-\mp@subsup{s}{}{2}
Jm = Motor armature inertia, Ibf-in-s}\mp@subsup{}{}{2}(\textrm{N}-\textrm{m}-\mp@subsup{\textrm{s}}{}{2}
L = Length of screw, in (m)
\rho = Density of screw material, lb/in }\mp@subsup{}{}{3}(\textrm{kg}/\mp@subsup{\textrm{m}}{}{3}
r = Radius of screw, in (m)
\pi = pi (3.14159)
C
```


Velocity Equations

Screw drive: $\mathbf{V}_{\mathrm{L}}=\omega \mathrm{m}^{*} \mathrm{~S} / 2 \pi \mathrm{in} / \mathrm{sec}(\mathrm{m} / \mathrm{sec})$
Belt or gear drive: $\omega m=\omega_{L}{ }^{*}$ R rad/sec

Torque Equations

Torque Under Load

Screw drive (GS, FT or separate screw): $\lambda=\frac{S \cdot F}{2 \cdot \pi \cdot \eta} \operatorname{lbf-in}(N-m)$
Belt and Pulley drive: $\lambda=T_{\mathrm{L}} / \mathrm{R} \eta$ Ibf-in ($\mathrm{N}-\mathrm{m}$)
Gear or gear reducer drive: $\lambda=T_{L} / R \eta$ lbf - in (N-m)
Torque Under Acceleration
$\lambda \mathrm{a}=\left(\mathbf{J}_{\mathrm{m}}+\mathbf{J}_{\mathrm{R}^{+}}\left(\mathbf{J}_{\mathrm{S}}+\mathbf{J}_{\mathrm{L}}\right) / \mathrm{R}^{2}\right)$ a lbf-in
$\alpha=$ angular acceleration $=(($ RPM $/ 60) \times 2 \pi) / t_{\text {acc }}, \mathrm{rad} / \mathrm{sec}^{2}$.
$J_{S}=\frac{\pi \cdot L \cdot \rho \mathrm{xr}^{4}}{2 \cdot \mathrm{~g}} \mathrm{lb}-\mathrm{in}-\mathrm{s}^{2}\left(\mathrm{~N}-\mathrm{m}-\mathrm{s}^{2}\right)$
Total Torque per move segment
$\lambda T=\lambda a+\lambda \operatorname{lbf}-i n(N-m)$

Mean Load Calculations

For accurate lifetime calculations of a roller screw in a linear application, the cubic mean load should be used. Following is a graph showing the values for force and distance as well
as the calculation for cubic mean load. Forces are shown for example purposes. Negative forces are shown as positive for calculation.

Cubic Mean Load Equation

Value from example numbers is 217 lbs .

Lifetime Calculations

The expected \mathbf{L}_{10} life of a roller screw is expressed as the linear travel distance that 90% of the screws are expected to meet or exceed before experiencing metal fatigue. The mathematical formula that defines this value is below. The life is in millions of inches (mm). This standard \mathbf{L}_{10} life calculation is what is expected of 90% of roller screws manufactured and is not a guarantee. Travel life estimate is based on a properly maintained screw that is free of contaminants and properly lubricated. Higher than 90% requires de-rating according to the following factors:

$95 \% \times 0.62$	$96 \% \times 0.53$
$97 \% \times 0.44$	$98 \% \times 0.33$
$99 \% \times 0.21$	

Single (non-preloaded) nut:

$$
\mathrm{L}_{10}=\left(\frac{\mathrm{C}_{\mathrm{a}}}{\mathrm{~F}_{\mathrm{cml}}}\right)^{3} \times \ell
$$

Short Stroke Lifetime Calculations

If your application requires high force over a stroke length shorter than the length of the rollers/nut, please contact Exlar for derated life calculations. You may also download the article "Calculating Life Expectency" at www.exlar.com.

Note: The dynamic load rating of zero backlash, preloaded screws is 63% of the dynamic load rating of the standard non-preloaded screws. The calculated travel life of a preloaded screw will be 25% of the calculated travel life of the same size and lead of a non-preloaded screw for the same application.

Elevated Ambient Temperature Operation

The speed/torque curves are based on $25^{\circ} \mathrm{C}$ ambient conditions. The actuators may be operated at ambient temperatures up to $85^{\circ} \mathrm{C}$.

Elevated Ambient Temp Factor (\%) =

$$
100 \% \times \sqrt{\frac{\text { Max Rated Temp }\left[\sim 130^{\circ} \mathrm{C}\right]-\text { Environment Temp }\left[\text { in }{ }^{\circ} \mathrm{C}\right]}{\text { Max Rated Temp }\left[\sim 130^{\circ} \mathrm{C}\right] \text { - Rated Ambient }\left[\sim 25^{\circ} \mathrm{C}\right]}}=
$$

Total Thrust Calculations

Terms and (units)

THRUST = Total linear force-lbf (N)
$\boldsymbol{F}_{\text {friction }}=$ Force from friction-lbf (N)
$F_{\text {acc }} \quad=$ Acceleration force-lbf (N)
$\mathbf{F}_{\text {gravity }}=$ Force due to gravity-lbf (N)
$\boldsymbol{F}_{\text {applied }}=$ Applied forces-lbf (N)
$386.4=$ Acceleration of gravity - in $/ \sec ^{2}\left(9.8 \mathrm{~m} / \mathrm{sec}^{2}\right)$

Variables

$\varnothing \quad=$ Angle of inclination - deg....................... $=$
tacc = Acceleration time - sec......................... $=$
v = Change in velocity - in $/ \mathrm{sec}(\mathrm{m} / \mathrm{s}) \ldots=$
$\mu \quad=$ Coefficient of sliding friction $=$ \qquad
$\mathbf{W}_{\mathrm{L}}=$ Weight of Load-lbm (kg)....................... $=$ \qquad
$\boldsymbol{F}_{\text {applied }}=$ Applied forces-lbf (N) $=$ \qquad

Thrust Calculation Equations

$$
\begin{aligned}
& \text { THRUST }=\left[\begin{array}{lll}
{[} & \mathbf{F}_{\text {friction }}
\end{array}\right]+\left[\quad \mathbf{F}_{\text {acceleration }} \quad\right]+\mathbf{F}_{\text {gravity }}+\mathbf{F}_{\text {applied }} \\
& \text { THRUST }=\left[\mathbf{W}_{\mathrm{L}} \times \mu \times \cos \varnothing\right]+\left[\left(\mathbf{W}_{\mathrm{L}} / 386.4\right) \times\left(\mathbf{v} / \mathbf{t}_{\mathrm{acc}}\right)\right]+\mathbf{W}_{\mathrm{L}} \sin \varnothing+\mathbf{F}_{\text {applied }}
\end{aligned}
$$

THRUST = $\quad]+[(\quad) \times(\quad)]+[\quad]+()$
$=$ \qquad lbf.

Calculate the thrust for each segment of the move profile. Use those values in calculations below. Use the units from the above definitions.

Cubic Mean Load Calculations

$\mathbf{F}_{1}=$	$\mathbf{S}_{1}=$	$\mathbf{F}_{1}{ }^{3} \mathbf{S}_{1}=$
$\mathbf{F}_{2}=$	$\mathbf{F}_{2}^{3} \mathbf{S}_{2}=$	
$\mathbf{F}_{3}=$	$\mathbf{S}_{2}=$	$\mathbf{F}_{3}{ }^{3} \mathbf{S}_{3}=$
$\mathbf{F}_{4}=$	$\mathbf{S}_{3}=$	$\mathbf{F}_{4}^{3} \mathbf{S}_{4}=$

Move Profiles may have more or less than four components. Adjust your calculations accordingly.

Torque Calculations

Terms and (units)

$\lambda \quad=$ Torque, Ib-in (N-m)... $=----------------------$
F = Applied Load, non inertial, Ibf (N) .. $=--------------------$
S = Screw lead, in (m)... $=$ \qquad
$\eta \quad=$ Screw or ratio efficiency ($\sim 85 \%$ for roller screws) .. $=$ \qquad
$\mathbf{g}=$ Gravitational constant, $386 \mathrm{in} / \mathrm{s} 2(9.8 \mathrm{~m} / \mathrm{s} 2)$... $=$ \qquad
$\mathrm{a}=$ Acceleration of motor, rad/s2... $=$ \qquad
$\mathbf{R}=$ Belt or reducer ratio ... $=$ \qquad
$\mathrm{T}_{\mathrm{L}}=$ Torque at driven load, Ibf-in (N-m) ... $=$ \qquad
$\mathbf{V}_{\mathrm{L}}=$ Linear velocity of load, in/sec (m/sec) .. $=$ \qquad
$\omega_{L}=$ Angular velocity of load, rad/sec... $=$
$\omega_{m}=$ Angular velocity of motor, rad/sec... $=$ \qquad
$\mathbf{m}=$ Mass of the applied load, Ibm (kg).. $=$ \qquad
$\mathrm{J}_{\mathrm{R}}=$ Reflected Inertia due to ratio, Ib-in-s2 (N-m-s2) .. $=$ \qquad
$\mathbf{J}_{S}=$ Reflected Inertia due to screw, Ib-in-s2 (N-m-s2) ... $=$
$\mathbf{J}_{\mathrm{L}}=$ Reflected Inertia due to load, Ib-in-s2(N-m-s2).. $=$
= ------------------------
$\mathrm{J}_{\mathrm{M}}=$ Motor armature inertia, lb-in-s2 (N-m-s2) .. $=$
$\pi \quad$ = pi ... $=$
3.14159
$\mathbf{K}_{\mathrm{t}}=$ Motor Torque constant, Ib-in/amp (N-m/amp) \qquad
\qquad

* For the GS Series J_{S} and J_{M} are one value from the GS Specifications.

Torque Equations

Torque From Calculated Thrust.

$\lambda=\frac{\mathrm{SF}}{2 \cdot \pi \bullet \eta} \mathrm{lb}-\mathrm{in}(\mathrm{N}-\mathrm{m})=(\quad) \mathrm{x}(\quad) / 2 \pi(0.85)=(\quad) \times(\quad) / 5.34=$ \qquad

Torque Due To Load, Rotary.

Belt and pulley drive: $\lambda=T_{L} / R \eta$ lbf-in (N-m)
Gear or gear reducer drive: $\lambda=T_{L} / R \eta$ Ibf-in (N-m)
Torque During Acceleration due to screw, motor, load and reduction, linear or rotary.
$\mathrm{I}=\left(\mathbf{J}_{\mathrm{m}}+\left(\mathbf{J}_{\mathrm{S}}+\mathbf{J}_{\mathrm{L}}\right) / \mathbf{R}^{2}\right)$ a lb -in $(\mathrm{N}-\mathrm{m})=[(\mathrm{l})+(+) /(\mathrm{l})](\mathrm{l})=$ \qquad
Total Torque $=$ Torque from calculated Thrust + Torque due to motor, screw and load

$$
(\quad)+(\quad)+(\quad)=
$$

\qquad
Motor Current $=\lambda / K_{t}=(\quad) /(\quad)=$ \qquad

Exlar Application Worksheet

Send to:
Exlar Automation
Email: cha_applications@curtisswright.com
Fax: (952) 368-4877
Attn: Applications Engineering

Date: \qquad Company Name: \qquad

Address: \qquad

City: \qquad State: \qquad Zip Code: \qquad

Phone: \qquad Fax: \qquad

Contact: \qquad Title: \qquad

Sketch/Describe Application

Velocity vs. Time

Force or Torque vs. Distance

Exlar Application Worksheet

Rotary Inertia To obtain a conversion from A to B, multiply by the value in the table.

B	$\mathrm{Kg}-\mathrm{m}^{2}$	$\mathrm{Kg}-\mathrm{cm}^{2}$	$\mathrm{g}-\mathrm{cm}^{2}$	kgf-m-s ${ }^{2}$	kgf-cm-s ${ }^{2}$	gf -cm- ${ }^{2}$	oz-in ${ }^{2}$	ozf-in-s ${ }^{2}$	lb-in ${ }^{2}$	lbf-in-s ${ }^{\text {2 }}$	lb-ft ${ }^{\text {2 }}$	lbf-ft-s ${ }^{2}$
A												
$\mathrm{Kg}-\mathrm{m}^{2}$	1	10^{4}	10^{7}	0.10192	10.1972	1.01972×10^{4}	5.46745×10^{4}	1.41612×10^{2}	3.41716×10^{3}	8.850732	23.73025	0.73756
$\mathrm{Kg}-\mathrm{cm}^{2}$	10^{-4}	1	10^{3}	1.01972×10^{5}	1.01972×10^{3}	1.01972	5.46745	1.41612×10^{-2}	0.341716	8.85073×10^{-4}	2.37303×10^{-3}	7.37561×10^{-5}
$\mathrm{g}-\mathrm{cm}^{2}$	10^{-7}	10^{-3}	1	1.01972×10^{-8}	1.01972×10^{-6}	1.01972×10^{-3}	5.46745×10^{-3}	1.41612×10^{-5}	3.41716×10^{-4}	8.85073×10^{-7}	2.37303×10^{-6}	7.37561×10^{-8}
kgf-m-s ${ }^{2}$	9.80665	9.80665×10^{4}	9.80665×10^{7}	1	10^{2}	10^{5}	5.36174×10^{5}	1.388674×10^{3}	3.35109×10^{4}	86.79606	2.32714×10^{2}	7.23300
kgf-cm-s ${ }^{2}$	9.80665×10^{-2}	9.80665×10^{2}	9.80665×10^{5}	10^{-2}	1	10^{5}	5.36174×10^{3}	13.8874	3.35109×10^{-2}	0.86796	2.32714	7.23300×10^{-2}
$\mathrm{gf}-\mathrm{cm}-\mathrm{s}^{2}$	$9.80665 \times 10-5$	0.980665	9.80665×10^{2}	10^{-5}	10^{-3}	1	5.36174	1.38874×10^{-2}	0.335109	8.67961×10^{-4}	2.32714×10^{-3}	7.23300×10^{-5}
0z-in ${ }^{2}$	1.82901×10^{-5}	0.182901	1.82901×10^{2}	1.86505×10^{-6}	1.86505×10^{-4}	0.186506	1	2.59008×10^{-3}	6.25×10^{-2}	1.61880×10^{-4}	4.34028×10^{-4}	1.34900×10^{-3}
Oz-in-s ${ }^{2}$	7.06154×10^{-3}	70.6154	7.06154×10^{4}	7.20077×10^{4}	7.20077×10^{-2}	72.0077	3.86089×10^{2}	1	24.13045	6.25×10^{-2}	0.167573	5.20833×10^{-4}
lb -in ${ }^{2}$	2.92641×10^{-4}	2.92641	2.92641×10^{3}	2.98411×10^{5}	2.98411×10^{3}	2.98411	16	4.14414×10^{2}	1	2.59008×10^{-3}	6.94444×10^{-3}	2.15840×10^{-4}
\|bf-in-s ${ }^{2}$	0.112985	1.129×10^{3}	1.12985×10^{6}	1.15213×10^{2}	1.15213	1.51213×10^{3}	6.1774×10^{3}	16	3.86088×10^{2}	1	2681175	8.3333×10^{-2}
$\mathrm{lbf} . f \mathrm{ft}^{2}$	4.21403×10^{-2}	4.21403×10^{2}	4.21403×10^{5}	4.29711×10^{3}	0.429711	4.297114	2.304×10^{3}	5.96755	144	0.372971	1	3.10809×10^{-2}
lbf-ft-s ${ }^{2}$	1.35583	1.35582×10^{4}	1.35582×10^{7}	0.138255	13.82551	1.38255×10^{4}	7.41289×10^{4}	192	4.63306×10^{3}	12	32.17400	1

Torque To obtain a conversion from A to B , multiply A by the value in the table.

B	N -m	$\mathrm{N}-\mathrm{cm}$	dyn-cm	Kg-m	$\mathrm{Kg}-\mathrm{cm}$	g -cm	oz-in	$\mathrm{ft-lb}$	in-lb
A									
N-m	1	10^{-2}	10^{7}	0.109716	10.19716	1.019716×10^{4}	141.6199	0.737562	8.85074
$\mathrm{N}-\mathrm{cm}$	102	1	10^{5}	1.019716×10^{3}	0.1019716	1.019716×10^{2}	1.41612	7.37562×10^{-3}	8.85074×10^{-2}
dyn-cm	10-7	10^{-5}	1	1.019716×10^{-8}	1.019716×10^{-6}	1.019716×10^{-3}	1.41612×10^{-5}	7.2562×10^{-8}	8.85074×10^{-7}
$\mathrm{Kg}-\mathrm{m}$	9.80665	980665×10^{2}	9.80665×10^{7}	1	10^{2}	10^{5}	1.38874×10^{3}	7.23301	86.79624
$\mathrm{Kg}-\mathrm{cm}$	9.80665x10-2	9.80665	9.80665×10^{5}	10^{-2}	1	10^{3}	13.8874	7.23301×10^{-2}	0.86792
$\mathrm{g}-\mathrm{cm}$	9.80665x10-5	9.80665×10^{-3}	9.80665×10^{2}	10^{-5}	10^{-3}	1	1.38874×10^{-2}	7.23301×10^{-5}	8.679624×10^{4}
0z-in	7.06155x10-3	0.706155	7.06155×10^{4}	7.20077×10^{-4}	7.20077×10^{-2}	72,077	1	5.20833×10^{-3}	6.250×10^{-2}
ft -lb	1.35582	1.35582×10^{2}	1.35582×10^{7}	0.1382548	13.82548	1.382548×10^{4}	192	1	12
in-lb	0.113	11.2985	1.12985×10^{6}	1.15212×10^{-2}	1.15212	1.15212×10^{3}	16	8.33333×10^{-2}	1

Common Material Densities		
Material	oz/in	gm/cm
Aluminum (cast or hard drawn)	1.54	2.66
Brass (cast or rolled)	4.80	8.30
Bronze (cast)	4.72	8.17
Copper (cast or hard drawn)	5.15	8.91
Plastic	0.64	1.11
Steel (hot or cold rolled)	4.48	7.75
Wood (hard)	0.46	0.80
Wood (soft)	0.28	0.58

Coefficients of Sliding Friction	
Materials in contact	μ
Steel on Steel (dry)	0.58
Steel on Steel (lubricated)	0.15
Aluminum on Steel	0.45
Copper on Steel	0.36
Brass on Steel	0.44
Plastic on Steel	0.20
Linear Bearings	0.001

Standard Ratings for Exlar Actuators
The standard IP rating for Exlar Actuators is IP54S or IP65S. Ingress protection is divided into two categories: solids and liquids.

For example, in IP65S the three digits following "IP" represent different forms of environmental influence:

- The first digit represents protection against ingress of solid objects.
- The second digit represents protection against ingress of liquids.
- The suffix digit represents the state of motion during operation.

Digit 1 - Ingress of Solid Objects

The IP rating system provides for 6 levels of protection against solids

$\mathbf{1}$	Protected against solid objects over 50 mm e.g. hands, large tools.
$\mathbf{2}$	Protected against solid objects over 12.5 mm e.g. hands, large tools.
$\mathbf{3}$	Protected against solid objects over 2.5 mm e.g. large gauge wire, $\mathbf{4}$
$\mathbf{5}$	Prollected against solid objects over 1.0 mm e.g. small gauge wire.
$\mathbf{6}$	Limited protection against dust ingress.

Digit 2 - Ingress of Liquids

The IP rating system provides for 9 levels of protection against liquids.
1 Protected against vertically falling drops of water or condensation.

3 Protected against sprays of water from any direction, even if the case is positioned up to 60 degrees from vertical.

4 Protected against splash water from any direction.
$7 \quad$ Protected against short periods (30 minutes or less) of immersion in water of 1 m or less.

8 Protected against long durations of immersion in water.
9 Protected against high-pressure, high-temperature wash-downs.

Suffix

Notes

1. OFFER AND ACCEPTANCE: These terms and conditions constitute Seller's offer to Buyer and acceptance by Buyer and any resulting sale is expressly limited to and conditioned upon Seller's terms and conditions as set forth below. If Buyer objects to any of Seller's terms and conditions, such objections must be expressly stated and brought to the attention of Seller in a written document which is separate from any purchase order or other printed form of Buyer. Such objections, or the incorporation of any additional or different terms or conditions by Buyer into a resulting order shall constitute non-acceptance of these Terms and Conditions, releasing Seller from any obligation or liability hereunder and a proposal for different terms and conditions which shall be objected to by Seller unless expressly accepted in writing by an authorized representative of Seller. Acknowledgment copy, if any, shall not constitute acceptance by Seller of any additional or different terms or conditions, nor shall Seller's commencement of effort, in itself, be construed as acceptance of an order containing additional or different terms and conditions.
2. PRICES: Published prices and discount schedules are subject to change without notice. They are prepared for the purpose of furnishing general information and are not quotations or offers to sell on the part of the company.
3. TRADE TERMS: Shipment terms are FCA, shipping point (Exlar, Chanhassen, MN). FCA (Free Carrier) per Incoterms 2010 means the Seller delivers the goods, cleared for export into the custody of the first carrier named by the buyer at the named place, above. This term is suitable for all modes of transport, including carriage by air, rail, road, and containerized/multi-modal transport. Title of the merchandise transfers from Exlar Corporation to the Buyer when it is received from Exlar by the carrier. Where allowable, Exlar will arrange the transportation via the carrier specified by the Buyer. The Buyer is responsible for all costs associated with the shipment.
4. PAYMENT TERMS: Subject to approval of Buyer's credit, the full net amount of each invoice is due and payable in cash within thirty (30) days of shipment. No payment discounts are offered, and minor inadvertent administrative errors contained in an invoice are subject to correction and shall not constitute reason for untimely payment. If, in the judgment of the Seller, the financial credit of Buyer at any time does not justify continuance of production or shipment of any product(s) on the payment terms herein specified, Seller may require full or partial payment prior to completion of production or shipment, or may terminate any order, or any part thereof, then outstanding. Custom products and blanket orders are subject to payment terms: 30% due at time of order, 70% due net 30 days from shipment.
5. MINIMUM BILLING: Minimum billing will be $\$ 50.00$.
6. DELAYS: Exlar shall not be liable for any defaults, damages or delays in fulfilling any order caused by conditions beyond Seller's control, including but not limited to acts of God, strike, lockout, boycott, or other labor troubles, war, riot, flood, government regulations, or delays from Seller's subcontractors or suppliers in furnishing materials or supplies due to one or more of the foregoing clauses.
7. CANCELLATIONS: All cancelled orders for standard products are subject to order cancellation charges. The minimum cancellation charge will be 20% of the order total. Standard products, if unused may be returned in accordance with the current return policy. All returns are subject to prior approval by Exlar, and return charges may apply. No return credit for any product will be issued or authorized prior to evaluation of the product by Exlar. Custom product is not returnable. Orders for custom product are not cancelable.
8. QUANTITY PRICING AND BLANKET ORDER PRICING TERMS: Blanket order quantity pricing requires a complete delivery schedule for the volume being ordered, with all units scheduled to deliver within a 15 month period from the placement of the purchase order to the final scheduled shipment. Any requests to change the delivery schedule of a blanket order must be received in writing 60 days prior to the requested change. Failure to take delivery of the entire ordered volume will result in back charges equal to the difference in quantity price between the volume ordered and the volume received times the number of units received. A cancellation charge in accordance with the cancellation policy (item 7) will apply to any reduction in delivered volume from the original ordered quantity.

For orders receiving quantity discounts, but not as scheduled blanket orders, the same quantity pricing rules apply. Failure to take delivery of the entire quantity ordered will result in back charges equal to the difference in quantity price between the volume ordered and the volume received times the number of units received. Cancellation charges in accordance with the cancellation policy (item 7) will apply to any reduction in delivered volume from the original ordered quantity. For either blanket orders or quantity orders, in addition to any applicable cancellation charges, the customer is responsible for the value of any additional inventory allocated specifically to their order. Charges for this inventory will be invoiced in addition to cancellation charges, along with any back charges for quantity variance.
9. DESTINATION CONTROL STATEMENT: Exlar products, technology or software are exported from the United States in accordance with the Export Administration Regulations (EAR) or International Traffic in Arms Regulations (ITAR) as applicable. Diversion, transfer, transshipment or disposal contrary to U.S. law is prohibited.
10. EXPORT CONTROL AND SHIPMENT REGULATIONS: Purchaser agrees at all times to comply with all United States laws and regulations as well as International Trade Laws, as they may exist from time to time, regarding export licenses or the control or regulation of exportation or re-exportation of products or technical data sold or supplied to Distributor. Seller may terminate or suspend this order, without remedy, should the Purchaser become an entity identified on any US export denial listing. Products ordered may require authorization and/or validated export license from a U.S. government agency. Seller may terminate or suspend this order, without remedy, should a government agency approval be denied.
11. GOVERNING LAW AND VENUE: This order shall be governed by, and construed in accordance with the laws of the State of Minnesota, U.S.A. All disputes shall be resolved by a court of competent jurisdiction in the trial courts of Carver County, in the State of Minnesota.
12. ATTORNEY FEES: Reasonable attorney's fees and other expenses of litigation must be awarded to the prevailing party in an action in which a remedy is sought under this order.
13. NON-WAIVER: The failure by the Seller to require performance of any provision shall not affect the Seller's right to require performance at any time thereafter, nor shall a waiver of any breach or default of this Order constitute a waiver of any subsequent breach or default or a waiver of the provision itself.
14. MERGER AND INTEGRATION: These Terms and Conditions contain the entire agreement of the parties with respect to the subject matter of this order, and supersede al prior negotiations, agreements and understandings with respect thereto. Purchase orders may only be amended by a written document duly executed by buyer and seller.
15. INDEMNITY: Buyer agrees to indemnify, defend and hold harmless Exlar from any claims, loss or damages arising out of or related to Seller's compliance with Buyer's designs, specifications or instructions in the furnishing of products to Buyer, whether based on infringement of patents, copyrights, trademark or other right of others, breach of warranty, negligence, or strict liability or other tort.

WARRANTY AND LIMITATION OF LIABILITY: Products are warranted for two years from date of manufacture as determined by the serial number on the product label. Labels are generated and applied to the product at the time of shipment. The first and second digits are the year and the third and fourth digits represent the manufacturing week. Product repairs are warranted for 90 days from the date of the repair. The date of repair is recorded within the Exlar database and tracked by individual product serial number.

Exlar Corporation warrants its product(s) to the original purchaser and in the case of original equipment manufacturers, to their original customer to be free from defects in material and workmanship and to be made only in accordance with Exlar standard published catalog specifications for the product(s) as published at the time of purchase. Warranty or performance to any other specifications is not covered by this warranty unless otherwise agreed to in writing by Exlar and documented as part of any and all contracts, including but not limited to purchase orders, sales orders, order confirmations, purchase contracts and purchase agreements. In no event shall Exlar be liable or have any responsibility under such warranty if the product(s) has been improperly stored, installed, used or maintained, or if Buyer has permitted any unauthorized modifications, adjustments and/or repairs to such product(s). Seller's obligation hereunder is limited solely to repairing or replacing (at its opinion), at the factory any product(s), or parts thereof, which prove to Seller's satisfaction to be defective as a result of defective materials, or workmanship and within the period of time, in accordance with the Seller's stated product warranty (see Terms and Conditions above), provided, however, that written notice of claimed defects shall have been given to Exlar within thirty (30) days from the date of any such defect is first discovered. The product(s) claimed to be defective must be returned to Exlar, transportation prepaid by Buyer, with written specification of the claimed defect. Evidence acceptable to Exlar must be furnished that the claimed defects were not caused by misuse, abuse, or neglect by anyone other than Exlar.

Components such as seals, wipers, bearings, brakes, bushings, gears, splines, and roller screw parts are considered wear parts and must be inspected and serviced on a regular basis. Any damage caused by failure to properly lubricate Exlar products and/or to replace wear parts at appropriate times, is not covered by this warranty. Any damage due to excessive loading is not covered by this warranty.

The use of products or components under load such that they reach the end of their expected life is a normal characteristic of the application of mechanical products. Reaching the end of a product's expected life does not indicate any defect in material or workmanship and is not covered by this warranty.

Costs for shipment of units returned to the factory for warranty repairs are the responsibility of the owner of the product. Exlar will return ship all warranty repairs or replacements via UPS Ground at no cost to the customer.

For international customers, Exlar will return ship warranty repairs or replacements via UPS Expedited Service and cover the associated shipping costs. Any VAT or local country taxes are the responsibility of the owner of the product.

The foregoing warranty is in lieu of all other warranties (except as Title), whether expressed or implied, including without limitation, any warranty of merchantability, or of fitness for any particular purpose, other than as expressly set forth and to the extent specified herein, and is in lieu of all other obligations or liabilities on the part of Exlar.

Seller's maximum liability with respect to these terms and conditions and any resulting sale, arising from any cause whatsoever, including without limitation, breach of contract or negligence, shall not exceed the price specified of the product(s) giving rise to the claim, and in no event shall Exlar be liable under this warranty otherwise for special, incidental or consequential damages, whether similar or dissimilar, of any nature arising or resulting from the purchase, installation, removal, repair, operation, use or breakdown of the product(s) or any other cause whatsoever, including negligence.

The foregoing warranty shall also apply to products or parts which have been repaired or replaced pursuant to such warranty, and within the period of time, in accordance with Seller's stated warranty.

NO PERSON INCLUDING ANY AGENT OR REPRESENTATIVE OF EXLAR CORPORATION IS AUTHORIZED TO MAKE ANY REPRESENTATION OR WARRANTY ON BEHALF OF EXLAR CONCERNING ANY PRODUCTS MANUFACTURED BY EXLAR, EXCEPT TO REFER PURCHASERS TO THIS WARRANTY.

USA \& CANADA

Exlar Automation
18400 West 77th Street
Chanhassen, MN 55317
Phone: 855-620-6200 (US \& Canada)
Fax: 952-368-4877

EUROPE

Exlar Europe GmbH
Schleißheimer Str., 91a
Garching bei München D-85748
Germany
Phone: +49 6184994730

ASIA

Exlar Asia Pacific
1007 Pine City Hotel
8 Dong An Road, Xuhui District
Shanghai 200032 China
Phone: +86 021-6495-7868

Distributed by:

Exlar ${ }^{\circledR}$ actuators are a brand of Curtiss-Wright, Actuation Division.

[^0]: $100 \% \times \sqrt{\frac{130^{\circ} \mathrm{C} \text { - Environment Temp }}{105^{\circ} \mathrm{C}}}$
 $=\%$ of published continuous @ $25^{\circ} \mathrm{C}$

[^1]: Pre-sale drawings and models are representative and are subject to change. Visit exlar.com to download a 3D model of your desired configuration.

[^2]: Pre-sale drawings and models are representative and are subject to change. Visit exlar.com to download a 3D model of your desired configuration.

[^3]: Pre-sale drawings and models are representative and are subject to change.

[^4]: Pre-sale drawings and models are representative and are subject to change.

